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Preface 
 

“Water is the beginning of everything” (Tales of Mile to) 
“Air is the beginning of everything” (Anaxagoras of Mile to) 

Introduction 

Why is it important to study Hydrodynamics? The answer may be strictly technical, 
but it may also involve some kind of human feeling about our environment and our 
(eventual) limitations to deal with its fluidic constituents.  

As teachers, when talking to our students about the importance of quantifying fluids, 
we (authors) go to the blackboard and draw, in blue color, a small circumference in the 
center of the board, and add the obvious name 'Earth'. Some words are then said, in 
the sense that Hydrodynamics is important, because we are beings strictly adapted to 
live immersed in a fluidic environment (air), and because we are beings composed 
basically by simple fluidic solutions (water solutions), encapsulated in fine carbon 
membranes. Then, with a red chalk, we draw two crosses: one inside and the other 
outside the circumference, explaining: “our environment is very limited. We can only 
survive in the space covered by the blue line. No one of us can survive in the inner 
part of this sphere, or in the outer space. Despite all films, games, and books about 
contacts with aliens, and endless journeys across the universe, our present knowledge 
only allows to suggest that it is most probable that the human being will extinct while 
in this fine fluid membrane, than to create sustainable artificial environments in the 
cosmos”.  

Sometimes, to add some drama, we project the known image of the earth on a wall 
(the image of the blue sphere), and then we blow a soap bubble explaining that the 
image gives the false impression that the entire sphere is our home. But our “home” is 
better represented by the liquid film of the soap bubble (only the film) and then we 
touch the bubble, exploding it, showing its fragility.  

In the sequence, we explain that a first reason to understand fluids would be, then, to 
guarantee the maintenance of the fluidic environment (the film) so that we could also 
guarantee our survival as much as possible. Further, as we move ourselves and 
produce our things immersed in fluid, it is interesting to optimize such operations in 
order to facilitate our survival. Still further, because our organisms interchange heat 
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and mass in cellular and corporal scales between different fluids, the understanding of 
these transports permits us to understand the spreading of diseases, the delivering of 
medicines to cells, and the use of physical properties of fluids in internal treatments. 
Thus, understanding these transports allows us to improve our quality of life. Finally, 
the observation of the inner part of the sphere, the outer space and its constituents, 
shows that many “highly energetic” phenomena behave like the fluids around us. It 
gives us the hope that the knowledge of fluids can help, in the future, to quantify, 
reproduce, control and use energy sources similar to those of the stars, allowing us to 
“move through the cosmos”, to create sustainable artificial environments and to leave 
this “limited film” when necessary. Of course, this “speech” may be viewed as a sort 
of escapism, related to a fiction of the future. In fact, the day-by-day activities show 
that we are spending our time with “more important” things, like fighting among us 
for the dividends of the next fashion wave (or the next technical wave), the hierarchy 
among nations, or the hierarchy of the cultures of the different nations. So, fighters, 
warriors, or generals still seem to be the agents that write our history. But global 
survival, or, in other words, the guarantee of any future history, will need other 
agents, devoted to other activities. The hope lies on the generation of knowledge, in 
which the knowledge about fluids is vital.  

Context of the present book “Hydrodynamics - Advanced Topics” 

A quick search in virtual book stores may result in more than one hundred titles 
involving the word “Hydrodynamics”. Considering the superposition existing with 
Fluid Mechanics, the number of titles grows much more. Considering all these titles, 
why try to organize another book on Hydrodynamics? One answer could be that the 
researchers always try new points of view to understand and treat the problems 
related to Hydrodynamics. Even a much known phenomenon may be re-explained 
from a point of view that introduces different tools (conceptual, numerical or practical) 
into the discussion of fluids. And eventually, a detail shows to be useful, or even very 
relevant. So, it is necessary to give the opportunity for the different authors to expose 
their points of view.  

Among the historically relevant books on Hydrodynamics, some should be mentioned 
here. For example, the volumes “Hydrodynamics” and “Hydraulics”, by Daniel 
Bernoulli (1738) and his father, Johann Bernoulli (1743) present many interesting 
sketches and the analyses that converged to the so called “Bernoulli equation”, later 
deduced more properly by Leonhard Euler. Although there are unpleasant questions 
about the authorship of the main ideas, as pointed out by Rouse (1967) and Calero 
(2008), both books are placed in a “prominent position” in history, because of their 
significant contributions. The volume written by Sir Horace Lamb (1879), now named 
“Hydrodynamics”, considers the basic equations, the vortex motion, and tidal waves, 
among other interesting topics. Considering the classical equations and procedures 
followed to study fluid motion, the books “Fundamentals of Hydro and 
Aerodynamics“ and “Applied Hydro and Aerodynamics“ by Prandtl and Tietjens 
(1934) present the theory and its practical applications in a comprehensive way, 
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influencing the experimental procedures for several decades. For over fifty years, the 
classical volume of Landau and Lifschitz (1959) remains an extremely valuable work 
for researchers in fluid mechanics.  

In addition to the usual themes, like the basic equations and turbulence, this book also 
covers themes like the relativistic fluid dynamics and the dynamics of superfluids. Each 
of the major topics considered in the studies of fluid mechanics can be widely discussed, 
generating specific texts and books. An example is the theory of boundary layers, in 
which the book of Schlichting (1951) has been considered an indispensable reference, 
because it condenses most of the basic concepts on this subject. Further, still considering 
specific topics, Stoker (1957) and Lighthill (1978) wrote about waves in fluids, while 
Chandrasekhar (1961) and Drazin and Reid (1981) considered hydrodynamic and 
hydromagnetic stability. It is also necessary to mention the books of Batchelor (1953), 
Hinze (1958), and Monin and Yaglom (1965), which are notable examples of texts on 
turbulence and statistical fluid mechanics, showing basic concepts and comparative 
studies between theory and experimental data. A more recent example may be the 
volume written by Kundu e Cohen (2008), which furnishes a chapter on “biofluid 
mechanics” The list of the “relevant books” is obviously not complete, and grows 
continuously, because new ideas are continuously added to the existing knowledge.  

The present book is one of the results of a project that generated three volumes, in 
which recent studies on Hydrodynamics are described. The remaining two titles are 
“Hydrodynamics - Natural Water Bodies”, and “Hydrodynamics - Optimizing 
Methods and Tools”. Along the chapters of the present volume, the authors show the 
application of concepts of Hydrodynamics in different fields, using different points of 
view and methods. The editors thank all authors for their efforts in presenting their 
chapters and conclusions, and hope that this effort will be welcomed by the 
professionals working with Hydrodynamics. 

The book “Hydrodynamics - Advanced Topics” is organized in the following manner: 

Part 1: Mathematical Models in Fluid Mechanics 
Part 2: Biological Applications and Biohydrodynamics 
Part 3: Detailed Experimental Analyses of Fluids and Flows 
Part 4: Radiation-, Electro-, Magnetohydrodynamics and Magnetorheology 
Part 5: Special Topics on Simulations and Experimental Data 

Hydrodynamics is a very rich area of study, involving some of the most intriguing 
theoretical problems, considering our present level of knowledge. General nonlinear 
solutions, closed statistical equations, explanation of sudden changes, for example, are 
wanted in different areas of research, being also a matter of study in Hydromechanics. 
Further, any solution in this field depends on many factors, or many “boundary 
conditions”. The changing of the boundary conditions is one of the ways through 
which the human being affects its fluidic environment. Changes in a specific site can 
impose catastrophic consequences in a whole region. For example, the permanent 
leakage of petroleum in one point in the ocean may affect the life along the entire 
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region covered by the marine currents that transport this oil. Gases or liquids, the 
changes in the quality of the fluids in which we live, certainly affect our quality of life.  

The knowledge about fluids, their movements, and their ability to transport physical 
properties and compounds is thus recognized as important for life. As a consequence, 
thinking about new solutions for general or specific problems in Hydromechanics may 
help to attain a sustainable relationship with our environment. Re-contextualizing the 
classical discussion about the truth, in which it was suggested that the “thinking” is 
the guarantee of our “existence” (St. Augustine, 386a, b, 400), we can say that we agree 
that thinking guarantees the human existence, and that there are too many warriors, 
and too few thinkers. Following this re-contextualized sense, it was also said that the 
man is a bridge between the “animal” and “something beyond the man” (Nietzsche, 
1883). This is an interesting metaphor, because bridges are built crossing fluids (even 
abysms are filled with fluids). Considering all possible interpretations of this phrase, 
let us study and understand the fluids, and let us help to build the bridge.  
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One Dimensional Turbulent Transfer Using 
Random Square Waves – Scalar/Velocity 

and Velocity/Velocity Interactions 

H. E. Schulz1,2, G. B. Lopes Júnior2, A. L. A. Simões2 and R. J. Lobosco2 
1Nucleus of Thermal Engineering and Fluids 

2Department of Hydraulics and Sanitary Engineering School  
of Engineering of São Carlos, University of São Paulo 

Brazil 

1. Introduction 
The mathematical treatment of phenomena that oscillate randomly in space and time, 
generating the so called “statistical governing equations”, is still a difficult task for scientists 
and engineers. Turbulence in fluids is an example of such phenomena, which has great 
influence on the transport of physical proprieties by the fluids, but which statistical 
quantification is still strongly based on  ad hoc models. In turbulent flows, parameters like 
velocity, temperature and mass concentration oscillate continuously in turbulent fluids, but 
their detailed behavior, considering all the possible time and space scales, has been 
considered difficult to be reproduced mathematically since the very beginning of the studies 
on turbulence. So, statistical equations were proposed and refined by several authors, 
aiming to describe the evolution of the “mean values” of the different parameters (see a 
description, for example, in Monin & Yaglom, 1979, 1981).  
The governing equations of fluid motion are nonlinear. This characteristic imposes that the 
classical statistical description of turbulence, in which the oscillating parameters are 
separated into mean functions and fluctuations, produces new unknown parameters when 
applied on the original equations. The generation of new variables is known as the “closure 
problem of statistical turbulence” and, in fact, appears in any phenomena of physical nature 
that oscillates randomly and whose representation is expressed by nonlinear conservation 
equations. The closure problem is described in many texts, like Hinze (1959), Monin & 
Yaglom (1979, 1981), and Pope (2000), and a general form to overcome this difficulty is 
matter of many studies. 
As reported by Schulz et al. (2011a), considering scalar transport in turbulent fluids, an 
early attempt to theoretically predict RMS profiles of the concentration fluctuations using 
“ideal random signals” was proposed by Schulz (1985) and Schulz & Schulz (1991). The 
authors used random square waves to represent concentration oscillations during mass 
transfer across the air-water interface, and showed that the RMS profile of the 
concentration fluctuations may be expressed as a function of the mean concentration 
profile. In other words, the mean concentration profile helps to know the RMS profile. In 
these studies, the authors did not consider the effect of diffusion, but argued that their 
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equation furnished an upper limit for the normalized RMS value, which is not reached 
when diffusion is taken into account.  
The random square waves were also used by Schulz et al. (1991) to quantify the so called 
“intensity of segregation” in the superficial boundary layer formed during mass transport, 
for which the explanations of segregation scales found in Brodkey (1967) were used. The 
time constant of the intensity of segregation, as defined in the classical studies of Corrsin 
(1957, 1964), was used to correlate the mass transfer coefficient across the water surface with 
more usual parameters, like the Schmidt number and the energy dissipation rate. Random 
square waves were also applied by Janzen (2006), who used the techniques of Particle Image 
Velocimetry (PIV) and Laser Induced Fluorescence (LIF) to study the mass transfer at the 
air-water interface, and compared his measurements with the predictions of Schulz & 
Schulz (1991) employing ad hoc concentration profiles. Further, Schulz & Janzen (2009) 
confirmed the upper limit for the normalized RMS of the concentration fluctuations by 
taking into account the effect of diffusion, also evaluating the thickness of diffusive layers 
and the role of diffusive and turbulent transports in boundary layers. A more detailed 
theoretical relationship for the RMS of the concentration fluctuation showed that several 
different statistical profiles of turbulent mass transfer may be interrelated.  
Intending to present the methodology in a more organized manner, Schulz et al. (2011a) 
showed a way to “model” the records of velocity and mass concentration (that is, to 
represent them in an a priori simplified form) for a problem of mass transport at gas-liquid 
interfaces. The fluctuations of these variables were expressed through the so called 
“partition, reduction, and superposition functions”, which were defined to simplify the 
oscillating records. As a consequence, a finite number of basic parameters was used to 
express all the statistical quantities of the equations of the problem in question. The 
extension of this approximation to different Transport Phenomena equations is 
demonstrated in the present study, in which the mentioned statistical functions are derived 
for general scalar transport (called here “scalar-velocity interactions”). A first application for 
velocity fields is also shown (called here “velocity-velocity interactions”). A useful 
consequence of this methodology is that it allows to “close” the turbulence equations, 
because the number of equations is bounded by the number of basic parameters used. In 
this chapter we show 1) the a priori modeling (simplified representation) of the records of 
turbulent variables, presenting the basic definitions used in the random square wave 
approximation (following Schulz et al., 2011a); 2) the generation of the usual statistical 
quantities considering the random square wave approximation (scalar-velocity interactions); 
3) the application of the methodology to a one-dimensional scalar transport problem, 
generating a closed set of equations easy to be solved with simple numerical resources; and 
4) the extension of the study of Schulz & Johannes (2009) to velocity fields (velocity-velocity 
interactions).  
Because the method considers primarily the oscillatory records itself (a priori analysis), and 
not phenomenological aspects related to physical peculiarities (a posteriori analysis, like the 
definition of a turbulent viscosity and the use of turbulent kinetic energy and its dissipation 
rate), it is applicable to any phenomenon with oscillatory characteristics.  

2. Scalar-velocity interactions 
2.1 Governing equations for transport of scalars: Unclosed statistical set 
The turbulent transfer equations for a scalar F are usually expressed as 
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 i F i
i i i

F F FV D v f g
t x x x

   
    

    
, i = 1, 2, 3. (1) 

where F  and f are the mean scalar function and the scalar fluctuation, respectively. iV  (i = 
1, 2, 3) are mean velocities and vi are velocity fluctuations, t is the time, xi are the Cartesian 
coordinates, g  represents the scalar sources and sinks and DF is the diffusivity coefficient of 
F. For one-dimensional transfer, without mean movements and generation/consumption of 
F, equation (1) with x3=z and v3=߱ is simplified to  

 F
F FD ω f
t z z

  
  

   
 (2) 

As can be seen, a second variable, given by the mean product ω f , is added to the equation 

of F , so that a second equation involving ω f  and F  is needed to obtain solutions for both 
variables. Additional statistical equations may be generated averaging the product between 
equation (1) and the instantaneous fluctuations elevated to some power ( f  ). As any new 
equation adds new unknown statistical products to the problem, the resulting system is 
never closed, so that no complete solution is obtained following strictly statistical 
procedures (closure problem). Studies on turbulence consider a low number of statistical 
equations (involving only the first statistical moments), together with additional equations 
based on ad hoc models that close the systems. This procedure seems to be the most natural 
choice, because having already obtained equation (2), it remains to model the new parcel 
ω f  a posteriori (that is, introducing hypotheses and definitions to solve it). An example is 
the combined use of the Boussinesq hypothesis (in which the turbulent viscosity/diffusivity 
is defined) with the Komogoroff reasoning about the relevance of the turbulent kinetic 
energy and its dissipation rate. The ߢ −  ,model for statistical turbulence is then obtained ߝ
for which two new statistical equations are generated, one of them for k and the other for ߝ. 
Of course, new unknown parameters appear, but also additional ad hoc considerations are 
made, relating them to already defined variables.  
In the present chapter, as done by Schulz et al. (2011a), we do not limit the number of 
statistical equations based on a posteriori definitions for ω f . Convenient a priori definitions 
are used on the oscillatory records, obtaining transformed equations for equation (1) and 

additional equations. The central moments of the scalar fluctuations, f F F
      ,2 ,1 =ߠ ,

3,… are considered here. For example, the one-dimensional equations for 3 ,2=ߠ and 4, are 
given by 

 
2 2 2

2
1 1
2 2 F

f F f f
f D f

t z z z




       
     

 (3a) 

 
3 3 2 2

2 2 2 2
2 2

1 1
3 3 F

f F F f F f
f f D f f

t t z z z z


           
       

 (3b) 
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4 4 2 2

3 3 3 3
2 2

1 1
4 4 F

f F F f F f
f f D f f

t t z z z z


           
       

 (3c) 

In this example, equation (3a) involves F  and f  of equation (2), but adds three new 
unknowns. The first four equations (2) and (3 a, b, c) already involve eleven different 

statistical quantities: F , 2f , 3f , 4f , f , 2f  , 3f  , 4f  , 
2

2
f

f
z




, 
2

2
2
f

f
z




, and 

2
3

2
f

f
z




, and the “closure” is not possible. The general equation for central moments, for 

any ߠ, is given by [20] 

 
2 2

1 1 1 1
2 2

1 1
F

f F F f F f
f f D f f

t t z z z z

 
   

 
   

           
       

 (3d) 

(using 1=ߠ reproduces equation (2)).  
As mentioned, the method models the records of the oscillatory variables, using random 
square waves. The number of equations is limited by the number of the basic parameters 
defined “a priori”.  

2.2 “Modeling” the records of the oscillatory variables 
As mentioned in the introduction, the term “modeling” is used here as “representing in a 
simplified way”. Following Schulz et al. (2011a), consider the function F(z, t) shown in 
Figure 1. It represents a region of a turbulent fluid in which the scalar quantity F oscillates 
between two functions Fp (p=previous) and Fn (n=next) in the interval z1<z<z2. Turbulence is 
assumed stationary.  
 

 
 
Fig. 1a. A two-dimensional random scalar 
field F oscillating between the boundary 
functions Fp(t) and Fn(t). 

 
Fig. 1b. Sketch of the region shown in figure 
(1a). Turbulence is stationary. Adapted from 
Schulz et al. (2011a) 

The time average of F(z, t) for 1 2z z z  , indicated by ( , )F z t  is defined as usual 

 
2

1

1 2
1( , ) ( , )

t

t

F z t F z t dt for z z z
t

  
   (4) 
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2 1t t t    is the time interval for the average operation. Equation (4) generates a mean 
value ( )F z  for 1 2z z z   and 1 2t t t  . Any statistical quantity present in equations 3, like, 

for example, the central moments f F F
     , is defined according to equation (4). To 

simplify notation, both coordinates (z, t) are dropped off in the rest of the text. 
The method described in the next sections allows to obtain the relevant statistical quantities 
of the governing equations, like the mean function F , using simplified records of F.  

2.3 Bimodal square wave: Mean values using a time-partition function for the scalar 
field - n 
The basic assumptions made to “model” the original oscillatory records may be followed 
considering Figure 2. In this sense, figure 2a is a sketch of the original record of the scalar 
variable F at a position 1 2z z z  , as shown in the gray vertical plane of Figure 1. The 

objective of this analysis is to obtain an equation for the mean function ( )F z  for 1 2t t t  , 
which is also shown in figure 2a. The values of the scalar variable during the turbulent 
transfer are affected by both the advective turbulent movements and diffusion. Discarding 
diffusion, the value of F would ideally alternate between the limits Fp and Fn (the bimodal 
square wave), as shown in Figure 2b (the fluid particles would transport only the two 
mentioned F values). This condition was assumed as a first simplification, but maintaining 
the correct mean, in which ( )F z  is unchanged. It is known that diffusion induces fluxes 
governed by F differences between two regions of the fluid (like the Fourier law for heat 
transfer and the Fick law for mass transfer). These fluxes may significantly lower the 
amplitude of the oscillations in small patches of fluid, and are taken into account using Fp-P 
and Fn+N for the two new limiting F values, as shown in Figure 2c. The parcels P and N 
depend on z.  
In other words, the amplitude of the square oscillations is “adjusted” (modeled), in order to 
approximate it to the mean amplitude of the original record. As can be seen, the aim of the 
method is not only to evaluate F  adequately, but also the lower order statistical quantities 
that depend on the fluctuations, which are relevant to close the statistical equations. The 
parcels P and N were introduced based on diffusion effects, but any cause that inhibits 
oscillations justifies these corrective parcels.  
The first statistical parameter is represented by n, and is defined as the fraction of the time 
for which the system is at each of the two F values (equations 5 and 6), being thus named as 
“partition function”. This function n depends on z and is  mathematically defined as 

 
( )

of the observation
pt at F P

n
t





 (5) 

This definition also implies that  

 ( )1
of the observation

nt at F N
n

t


 


 (6) 

F  remains the same in figures 2a, b and c. The constancy between figures 2b and c is 
obtained using mass conservation, implying that P and N are related through equation (7):  
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Fig. 2. a) Sketch of the F record of the gray plane of figure 1, at z, b) Simplified record 
alternating F between Fp and Fn, c) Simplified record with amplitude damping. Upper and 
lower points do not superpose at the discontinuities (the F segments are open at the left and 
closed at the right, as shown in the detail). 
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  1
P n

N
n


  (7) 

The mean value of F is obtained from a weighted average operation between Fp-P and Fn+N, 
using equations (5) through (7). It follows that  

 (1 )p nF nF n F    (8) 

Isolating n, equation (8) leads to 

 n

p n

F F
n

F F





 (9) 

Thus, the partition function n previously defined by equation (5) coincides with the 
normalized form of F  given by equation (9). Note that n is used as weighting factor for any 
statistical parameter that depends on F. For example, the mean value Q  of a function Q(F) 
is calculated similarly to equation (8), furnishing  

    (1 )p nQ n Q F P n Q F N      (9a) 

As a consequence, equations (9) and (9a) show that any new mean function Q  is related to 
the mean function F . Or, in other words: because n is used to calculate the different mean 
profiles, all profiles are interrelated. 
From the above discussion it may be inferred that any new variable added to the problem 
will have its own partition function. In the present section of scalar-velocity interactions, 
two partition functions are described: n for F (scalar) and m for V (velocity).  

2.4 Bimodal square wave: Adjusting amplitudes using a reduction coefficient function 
for scalars - f  

The sketch of figure 2c shows that the parcel P is always smaller or equal to pF F . As 

already mentioned, this parcel shows that the amplitude of the fluctuations is reduced. 
Thus, a reduction coefficient ߙ is defined here as  

 0 1f p fP F F        (10) 

where ߙ is a function of z and quantifies the reduction of the amplitude due to interactions 
between parcels of liquid with different F values (described here as a measure of diffusion 
effects, but which can be a measure of any cause that inhibits fluctuations). Using the effect 
of diffusion to interpret the new function, values of ߙ close to 1 or 0 indicate strong or weak 
influence of diffusion, respectively. Considering this interpretation, Schulz & Janzen (2009) 
reported experimental profiles for ߙ in the mass concentration boundary layer during air-
water interfacial mass-transfer, which showed values close to 1 in both the vicinity of the 
surface and in the bulk liquid, and closer to 0 in an intermediate region (giving therefore a 
minimum value in this region).  
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From equations (7), (8) and (10), N and P are now expressed as 

 
 

  1

f p n

f p n

N n F F

P n F F





  


   
0 1f   (11) 

As for the partition functions, any new variable implies in a new reduction coefficient. In the 
present section of scalar-velocity interactions, only the reduction coefficient for F is used 
(that is,  ߙ ). In the section for velocity-velocity interactions, a reduction coefficient ߙ௩ for V 
(velocity) is used. 

2.5 Bimodal square wave: Quantifying superposition using the superposition 
coefficient function -  
Let us now consider the two main variables of turbulent scalar transport, the scalar F and 
the velocity V, oscillating simultaneously in the interval z1<z<z2 of Figure 1. As usual, they 
are represented as F F f   and V V   , where F  and V  are the mean values, and f and ߱ are the fluctuations. The correlation coefficient function ߩ(z) for the fluctuations f and ߱ is 
given by 

    
2 2

1 1
2 2 2 2

1 1,
t t

t t

f f
z z t dt dt

t t f f

 
 

 
  
    (12) 

If the fluctuations are generated by the same cause, it is expected that the records of ߱ and f 
are at least partially superposed. As done for F, it is assumed that the oscillations ߱ can be 
positive or negative and so a partition function m (a function of z) may be defined. If we 
consider a perfect superposition between f and ߱, it would imply in n=m, though this is not 
usually the case. Aiming to consider all the cases, a superposition coefficient ߚ is defined so 
that 1.0=ߚ reflects the direct superposition (m=n), and 0.0=ߚ implies the inverse 
superposition of the positive and the negative fluctuations (m=1-n) of both fields.  
The definition of ߚ is better understood considering the scheme presented in figure 3. In 
this figure all positive fluctuations of the scalar variable were put together, so that the 
nondimensional time intervals were added, furnishing the value n. As a consequence, the 
nondimensional fraction of time of the juxtaposed negative fluctuations appears as 1-n. 
The velocity fluctuations also appear juxtaposed, showing that 1=ߚ superposes f and n 
with the same sign (++ and --), while 0=ߚ superposes f and n with opposite signs (+- and -
+). The positive and negative scalar fluctuations are represented by f1 and f2, respectively. 
The downwards and upwards velocity fluctuations are represented by ߱ௗ and ߱௨, 
respectively. 
Thus, m, which defines the fraction of the time for which the system is at ߱ௗ, is expressed 
as 

  1 2m n n      is a function of z. Also here any new variable implies in new superposition functions. In ߚ (13) 
the present section of scalar-velocity interactions only one superposition coefficient function 
is used (linking scalar and velocity fluctuations).  
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Fig. 3. Juxtaposed fluctuations of f and ߱, showing a compact form of the time fractions n 
and (1-n), and the use of the superposition function ߚ. The horizontal axis represents the 
time as shown in equations (5) and (6). 

2.6 The fluctuations around the mean for bimodal square waves 
An advantage of using random square waves as shown in Figure 2 is that they generate only 
two fluctuation amplitudes for each variable, which are then used to calculate the wished 
statistical quantities. Of course, the functions defined in sections 2.3 through 2.5 (partition, 
reduction and superposition functions) are also used, and they must “adjust” the statistical 
quantities to adequate values. From equations (8), (10), and (11), the two instantaneous 
scalar fluctuations are then given by equations (14) and (15)  

     1 (1 ) 1p p n ff F P F n F F           (positive) (14) 

     2 1n p n ff F N F n F F           (negative) (15) 

2.7 Velocity fluctuations and the RMS velocity 
In figure 1 the scalar variable is represented oscillating between two homogeneous values. 
But nothing was said about the velocity field that interacts with the scalar field. It may also 
be bounded by homogeneous velocity values, but may as well have zero mean velocities in 
the entire physical domain, without any evident reference velocity. This is the case, for 
example, of the problem of interfacial mass transfer across gas-liquid interfaces, the 
application shown by Schulz et al. (2011a). In such situations, it is more useful to use the rms 

velocity 2 as reference, as commonly adopted in turbulence. For the one-dimensional 
case, with null mean motion, all equations must be derived using only the vertical velocity 

fluctuations ߱. It is necessary, thus, to obtain equations for 2  and for the velocity 
fluctuations (like equations 14 and 15 for f) considering the random square waves 
approximation. An auxiliary velocity scale U is firstly defined, shown in figure 4, 
considering “downwards” (߱ௗ) and “upwards” (߱௨) fluctuations, which amplitudes are 
functions of z. 
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Fig. 4. The definition of the partition function m and the velocity scale U. Upwards (-) and 
downwards (+) velocities are shown. The dark and light gray areas are equal, so that the 
mean velocity is zero. 

Using m for the partition function of the velocity, the scale U shown in figure 4 is defined as 
the integration of the upper or the lower parts of the graph in Figure 4, as 

 dU m        and        1uU m   (16) 

Equation (17) describes the zero mean velocity (remembering that ߱௨ is negative) 

  1 0d um m           or       0U U   (17) 

U is a function of z. Let us now consider the RMS velocity 2 , which is calculated as 

   22 2 1d um m             and         22 2 1d um m       (18) 

U and 2  may be easily related. From equations (13), (16), and (18) it follows that 

    2 1 2 2U n n n n             (19) 

Finally, the velocity fluctuations may be related to 2 , n and  using equations (16) and 
(19) 

  
2 2

1 2d
n n

n n
  
 
 


  

       and        2 1 2
2u

n n
n n

 
 

 
  


 

 (20) 

2 is a function of z and is used as basic parameter for situations in which no evident 

reference velocities are present. For the example of interfacial mass transfer, 2  is zero at 
the water surface (z=0) and constant ( 0 ) in the bulk liquid ( z  ).  
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The basic functions n, ߙ, ߚ, 2 , defined in items 2.3 through 2.7, are used in the sequence 
to calculate the statistical quantities of the one-dimensional equations for scalar-velocity 
interactions. Further, incorporating them into equations (2) and (3), a closed set of equations 
for these functions is generated. In other words, the one dimensional turbulent transport 
problem reduces to the calculation of these functions, defined a priori to their inclusion in the 
equations. Some of their general characteristics are described in table 1.  
The RMS velocity may be normalized to be also bounded by the (absolute) values of 0.0 and 
1.0. Because the position of the maximum value depends on the situation under study, 
needing more detailed explanations, the table is presented with the RMS velocity in 
dimensional form and having an undetermined maximum value.  
 

Function n ߙ 2 ߚ  

Dimension Nondimensional Nondimensional Nondimensional Velocity 
Physical 
ground Partition Reduction Superposition Ref. velocity 

Maximum 
value 1 1 1 Undetermined 

Minimum 
value 0 0 0 0 

Table 1. Characteristics of the functions defined for one dimensional scalar transport. 

A further conclusion is that, because four functions need to be calculated, it implies that 
only four equations must be transformed to the random square waves representation in this 
one-dimensional situation. As a consequence, only lower order statistical quantities present 
in these equations need to be transformed, which is a positive consequence of this 
approximation, because the simplifications (and associated deviations) will not be 
propagated to the much higher order terms (they will not be present in the set of equations).  

2.8 The central moments of scalar quantities using random square waves 
It was shown that equations (3) involve central moments like 2f , 3f , 4f , which, as 
mentioned, must be converted to the square waves representation. The general form of the 
central moments is defined as 

 1,2,3,...f F F        (21) 

For any statistical phenomenon, the first order central moment (1=ߠ) is always zero. Using 
equations (14) and (15), Schulz & Janzen (2009) showed that the second order central 

moment ( 2f for 2=ߠ) is given by 

       2 22 2 2
1 2 1 1 1 f p nf f n f n n n F F        (22) 

or, normalizing the RMS value (f ’2) 
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2

2' 1 1 f
p n

f
f n n

F F
   


                     

2
1

1f
p n

f

F F n n
  

 
 (23) 

This form is useful to obtain the reduction function ߙ from experimental data, using the 
normalized mean profile and the RMS profile, as shown by Schulz & Janzen (2009). 
Equation (23) shows that diffusion, or other causes that inhibit the fluctuations and imply in 

0f  , imposes a peak of f’2 lower than 0.5.  

The general central moments (3 ,2 ,1=ߠ…) for the scalar fluctuation f are given by 

              1 1
1 2 1 1 1 1 1p n ff f n f n n n n n F F

                    (24) 

or, normalizing the ߠth root ( ఏ݂) 

            1 1' 1 1 1 1 f
p n

f
f n n n n

F F


            

 (25) 

 

The functional form of the statistical quantities shown here must be obtained solving the 
transformed turbulent transport equations (that is, the equations involving these quantities). 
Equations (21) through (25) show that, given n and ߙ, it is possible to calculate all the 

central moments ( f  statistical profiles) needed in the one-dimensional equations for scalar 
transfer.  

2.9 The covariances and correlation coefficient functions using random square waves 
2.9.1 The turbulent flux of the scalar F  
The turbulent scalar flux, denoted by F , is defined as the mean product between scalar 
fluctuations (f) and velocity fluctuations (߱) 

 F f  (26) 

Thus f  in equation (2) is the turbulent flux of F along z. The statistical correlation 
between ߱ and f is given by the correlation coefficient function, r, defined as 

 
2 2

f
r

f




  (27) 

r is a function of z, and 0 1r  . As it is clear from equations (26) and (27), r is also the 

normalized turbulent flux of F and reaches a peak amplitude less than or equal to 1.0, a 
range convenient for the present method, coinciding with the defined functions n, ߙ, ߚ, also 
bounded by 0.0 and 1.0 (as shown in table 1). The present method allows to express r as 
dependent on n, the normalized mean profile of F.  
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2.9.2 The correlation coefficient functions θf ω  
Equations (3) involve turbulent fluxes like fω , 2f  , 3f  , 4f  , which are unknown 

variables that must be expressed as functions of n, ߙ, ߚ and 2 . For products between 
any power of f and ߱, the superposition coefficient ߚ must be used to account for an 
“imperfect” superposition between the scalar and the velocity fluctuations. Therefore the 
flux f  is calculated as shown in equation (28), with ߚ being equally applied for the 
positive and negative fluctuations, as shown in figure 3 

       1 2 1 21 1 1 1d uf f n f n f n f n                      (28) 

Equations (13) through (20) and (28) lead to 

       
 2 1 221 (1 ) 2 1

1 2 2p n f
n nn n

f F F n n
n n n n

     
   

           
      

 (29) 

Rearranging, the turbulent scalar flux is expressed as 

 
    2

2

1 1

(1 )(1 )
(2 1)

f p nn n F F
f

n n

 


 


  



 



 (30) 

Equations (23), (27) and (30) lead to the correlation coefficient function  

  

   
 

, 2 2
2

1
1

1
2 1

f

n nf
r

f n n



 



 


 



      with      ,0 1
f

r    (31) 

Schulz el al. (2010) used this equation together with data measured by Janzen (2006). The 
“ideal” turbulent mass flux at gas-liquid interfaces was presented (perfect superposition of f 

and ߱, obtained for 1.0 = ߚ). Is this case, , 1fr   , and 2 2f f  . The measured peak 

of 2 , represented by W, was used to normalize f , as shown in Figure 5. 
Considering r as defined by equation (27), it is now a function of n and ߚ only. Generalizing 
for ݂ఏ, we have 

       1 2 1 21 1 1 1d uf f n f n f n f n                         (32) 

The correlation coefficient function is now given by  

  

   
 

 

     
, 2 1 2 2 12 2

2

1 ( )1
1 1 11

2 1

f

n nn nf
r

f n nn n


 

   


 


 

                   

 (33) 



 
Hydrodynamics – Advanced Topics 16

 
Fig. 5. Normalized “ideal” turbulent fluxes for 1=ߚ using measured data. W is the measured 

peak of 2 . z is the vertical distance from the interface. Adapted from Schulz et al. (2011a). 

Equation (32) is used to calculate covariances like 2f  , 3f  , 4f   , present in equations 
(3). For example, for 3 ,2=ߠ and 4 the normalized fluxes are given, respectively, by: 

  

   
 

 
   

2

2

, 3 34 2
2

1 1 2
1 11

2 1

f

n n nf
r

n nf n n



 


 
  

           

 (34a) 

  

   
 

 

   
3
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 (34b) 

  

   
 

 

   

4 44
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11
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2 1
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n nn nf
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 (34c) 

As an ideal case, for =1 (perfect superposition) equation 33 furnishes 

 
 

     
, 2 1 2 2 12 2

1 ( )

1 1
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n nf
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 (35) 

and the normalized covariances 2f  , 3f  , 4f  , for 3 ,2=ߠ and 4, are then given, 
respectively, by: 

  
   

2, 3 3

1 2

1
f

n
r

n n


 
 

  
     

 (36a) 
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 (36b) 
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 (36c) 

Equations (34a) and (36a) can be used to analyze the general behavior of the flux 2f  . 
These equations involve the factor  1 2n , which shows that this flux changes its direction 

at n=0.5. For 0<n<0.5 the flux 2f   is positive, while for 0.5<n<1.0, it is negative. In the 
mentioned example of gas-liquid mass transfer, the positive sign indicates a flux entering 
into the bulk liquid, while the negative sign indicates a flux leaving the bulk liquid. This 

behavior of 2f   was described by Magnaudet & Calmet (2006) based on results obtained 

from numerical simulations. A similar change of direction is observed for the flux 4f  , 

easily analyzed through the polynomial  4 41 n n  .  
The equations of items 2.9.1 and 2.9.2 confirm that the normalized turbulent fluxes are 
expressed as functions of n and ߚ only, while the covariances may be expressed as functions 

of n, ߙ ,ߚ and 2 .  

2.10 Transforming the derivatives of the statistical equations 
2.10.1 Simple derivatives 
The governing differential equations (2) and (3) involve the derivatives of several mean 
quantities. The different physical situations may involve different physical principles and 
boundary conditions, so that “particular” solutions may be found. For the example of 
interfacial mass transfer reported in the cited literature (e.g. Wilhelm & Gulliver, 1991; Jähne 
& Monahan, 1995; Donelan, et al., 2002; Janzen et al., 2010, 2011), Fp is taken as the constant 
saturation concentration of gas at the gas-liquid interface, and Fn is the homogeneous bulk 
liquid gas concentration. In this chapter this mass transfer problem is considered as 
example, because it involves an interesting definition of the time derivative of Fn.  

The pth-order space derivative 
p

p
F

z



 is obtained directly from equation (8), and is given by 

  
p p

p np p
F n

F F
z z

 
 

 
 (37) 

The time derivative of the mean concentration, F
t




, is also obtained from equation (8) and 

eventual previous knowledge about the time evolution of Fp and Fn. For interfacial mass transfer 
the time evolution of the mass concentration in the bulk liquid follows equation (38) (Wilhelm & 
Gulliver, 1991; Jähne & Monahan, 1995; Donelan, et al., 2002; Janzen et al., 2010, 2011) 
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  n
f p n

dF
K F F

dt
   (38) 

This equation applies to the boundary value Fn or, in other words, it expresses the time 
variation of the boundary condition Fn shown in figure 1. Kf is the transfer coefficient of F 
(mass transfer coefficient in the example). To obtain the time derivative of F , equations (8) 
and (38) are used, thus involving the partition function n. In this example, n depends on the 
agitation conditions of the liquid phase, which are maintained constant along the time 
(stationary turbulence). As a consequence, n is also constant in time. The time derivative of 
F  in  equation (8) is then given by 

 
(1 )

(1 )p n n
nF n FF F

n
t t t

       
  

 (39) 

From equations (38) and (39), it follows that 

   1f p n
F

K n F F
t


  


 (40) 

Equation (40) is valid for boundary conditions given by equation (38) (usual in interfacial 
mass and heat transfers). As already stressed, different physical situations may conduce to 
different equations.  
The time derivatives of the central moments f   are obtained from equation (24), 
furnishing:  

 
           11 11 1 1 1 n

p n f
f F

n n n n F F
t t

     
               

 or (41) 

 
           1 11 1 1 1p n f

f
K n n n n F F

t

                   
As no velocity fluctuation is involved, only the partition function n is needed to obtain the 

mean values of the derivatives of f  , that is, no superposition coefficient is needed. The 
obtained equations depend only on n and ߙ , the basic functions related to F.  

2.10.2 Mean products between powers of the scalar fluctuations and their derivatives  
Finaly, the last “kind” of statistical quantities existing in equations (3) involve mean products 

of fluctuations and their second order derivatives, like 
2

2
f

f
z




, 
2
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f

f
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, and 
2

3
2
f

f
z




. The 

general form of such mean products is given in the sequence. From equations (14) and (15), it 
follows that 
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 (42) 
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 (43) 

Using the partition function n, we obtain the mean product 
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 (44) 

Equation (44) shows that mean products between powers of f and its derivatives are 
expressed as functions of n and ߙ only.  

2.11 The heat/mass transport example 
In this section, the simplified example presented by Schulz et al. (2011a) is considered in 
more detail. The simplified condition was obtained by using a constant ߙ, in the range from 
0.0 to 1.0. The obtained differential equations are nonlinear, but it was possible to reduce the 
set of equations to only one equation, solvable using mathematical tables like Microsoft 
Excel® or similar. 

2.11.1 Obtaining the transformed equations for the one-dimensional transport of F 
Equation (2) may be transformed to its random square waves correspondent using 
equations (2), (8), (30), (37), and (40), leading to 
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 (45) 

In the same way, equation (3d) is transformed to its random square waves correspondent 
using equations (3d), (8), (24), (32), (37), (41), and (44), leading to 
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(46)

 

2.11.2 Simplified case of interfacial heat/mass transfer  
Although involving few equations for the present case, the set of the coupled nonlinear 
equations (45) and (46) may have no simple solution. As mentioned, the original one-
dimensional problem needs four equations. But as the simplified solution of interfacial 
transfer using a mean constant 

f f   is considered here, only three equations would be 

needed. Further, recognizing in equations (45) and (46) that ߚ and 2  appear always 
together in the form 
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 (47) 

It is possible to reduce the problem to a set of only two coupled equations, for n and the 
function IJ. Thus, only equations (45) and (46) for 2=ߠ are necessary to close the problem 
when using 

f f  . Defining (1 )fA    the set of the two equations is given by 

    2

21f f
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Equations (48) may be presented in nondimensional form, using z*=z/E, with E=z2-z1, and 
S=1/ߢ=Df/KfE2 
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Equation (50a) is used to obtain dIJ/dz*, which leads, when substituted into equation (50b), 
to the following governing equation for n (see appendix 1) 
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 (51) 

Thus, the one-dimensional problem is reduced to solve equation (51) alone. It admits non-
trivial analytical solution for the extreme case A=0 (or 1f  ), in the form  
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   (52) 

But this effect of diffusion for all 0<z*<1 is considered overestimated. Equation (51) was 
presented by Schulz et al. (2011a), but with different coefficients in the last parcel of the first 
member (the parcel involving 3/2-2n in equation (51) involved 1-n in the mentioned study). 
Appendix 1 shows the steps followed to obtain this equation. Numerical solutions were 
obtained using Runge-Kutta schemes of third, fourth and fifth orders. Schulz et al. (2011a) 
presented a first evaluation of the n profile using a fourth order Runge-Kutta method and 
comparing the predictions with the measured data of Janzen (2006). An improved solution 
was proposed by Schulz et al. (2011b) using a third order Runge-Kutta method, in which a 
good superposition between predictions and measurements was obtained. In the present 
chapter, results of the third, fourth and fifth orders approximations are shown. The system 
of equations derived from (51) and solved with Runge-Kutta methods is given by: 
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(53) 

Equations (53) were solved as an initial value problem, that is, with the boundary conditions 
expressed at z*=0. In this case, n(0)=1 and j(0)=~-3 (considering the experimental data of 
Janzen, 2006). The value of  w(0) was calculated iteratively, obeying the boundary condition 
0<n(1)<0.01. The Runge-Kutta method is explicit, but iterative procedures were used to 
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evaluate the parameters at z*=0 applying the quasi-Newton method  and the Solver device 
of the Excel® table. Appendix 2 explains the procedures followed in the table. The curves of 
figure 6a were obtained for 0.001 0.005  , a range based on the ߢ experimental values of 
Janzen (2006), for which ~0.003<0.004~>ߢ. The values A=0.5 and n”(0)=3.056 were used to 
calculate n in this figure. As can be seen, even using a constant A, the calculated curve n(z*) 
closely follows the form of the measured curve. Because it is known that f  is a function of 
z*, more complete solutions must consider this dependence. The curve of Schulz et al. 
(2011a) in figure 6a was obtained following different procedures as those described here. 
The curves obtained in the present study show better agreement than the former one.  
 

 
Fig. 6a. Predictions of n for n”(0) = 3.056. 
Fourth order Runge-Kutta. 

 
Fig. 6b. Predictions of n for 0.0025 = ߢ, and -
0.0449 ≤n”(0) ≤ 3.055. Fifth order Runge-
Kutta 

Fig. 6b. was obtained with following conditions for the pairs [A, n”(0)]: [0.2, 0.00596], [0.25, -
0.0145], [0.29, -0.04495], [0.35, 1.508], [0.4, 1.8996], [0.45, 1.849], [0.5, 2.509], [0.55, 3.0547], 
[0.62, 2.9915], [0.90, 0.00125]. Further, n’(0) = -3 for A between 0.20 and 0.62, and n’(0) = -1 for 
A=0.90. 

Figure 7a shows results for 0.4~ߢ, that is, having a value around 100 times higher than those 
of the experimental range of Janzen (2006), showing that the method allows to study 
phenomena subjected to different turbulence levels. ߢ = (Kf E2/Df) is dependent on the 
turbulence level, through the parameters E and Kf, and different values of these variables 
allow to test the effect of different turbulence conditions on n. Figure 7b presents results 
similar to those of figure 6a, but using a third order Runge-Kutta method, showing that 
simpler schemes can be used to obtain adequate results. 
As the definitions of item 3 are independent of the nature of the governing differential 
equations, it is expected that the present procedures are useful for different phenomena 
governed by statistical differential equations. In the next section, the first steps for an 
application in velocity-velocity interactions are presented. 
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Fig. 7a. Predictions of n for n”(0) = 3.056,  and 0.40~ߢ. Fourth order Runge-Kutta. 

 
Fig. 7b. Predictions of n for 0.003=ߢ and 
2.99812 ≤ n’’(0) ≤ 3.2111. Third order 
Runge-Kutta 

3. Velocity-velocity interactions 
The aim of this section is to present some first correlations for a simple velocity field. In this 
case, the flow between two parallel plates is considered. We follow a procedure similar to 
that presented by Schulz & Janzen (2009), in which the measured functional form of the 
reduction function is shown. As a basis for the analogy, some governing equations are first 
presented. The Navier-Stokes equations describe the movement of fluids and, when used to 
quantify turbulent movements, they are usually rewritten as the Reynolds equations: 

 1j j j
i i j i

i i i j

V V V p
V v v B

t x x x x




    
            

,            i, j = 1, 2, 3. (54) 

p  is the mean pressure, ߭ is the kinematic viscosity of the fluid and Bi is the body force per 
unit mass (acceleration of the gravity). For stationary one-dimensional horizontal flows 
between two parallel plates, equation (1), with x1=x, x3=z, v1=u and v3=߱, is simplified to:  

 1 p U
u

x z z
 


  

  
   

 (55) 

This equation is similar to equation (2) for one dimensional scalar fields. As for the scalar 
case, the mean product u  appears as a new variable, in addition to the mean velocity U . 
In this chapter, no additional governing equation is presented, because the main objective is 
to expose the analogy. The observed similarity between the equations suggests also to use 
the partition, reduction and superposition functions for this velocity field. 
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Both the upper and the lower parts of the flow sketched in figure 8 may be considered. We 
consider here the lower part, so that it is possible to define a zero velocity (Un) at the lower 
surface of the flow, and a “virtual” maximum velocity (Up) in the center of the flow. This 
virtual value is constant and is at least higher or equal to the largest fluctuations (see figure 
8), allowing to follow the analogy with the previous scalar case. 
 

 
Fig. 8. The flow between two parallel planes, showing the reference velocities Un and Up. 

The partition function nv, for the longitudinal component of the velocity, is defined as: 
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It follows that: 
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 (57) 

Equation (7) must be used to reduce the velocity amplitudes around the same mean velocity. 
It implies that the same mass is subjected to the velocity corrections P and N. As for the 
scalar functions, the partition function nv is then also represented by the normalized mean 
velocity profile: 

 n
v

p n

U U
n

U U





 (58) 

To quantify the reduction of the amplitudes of the longitudinal velocity fluctuations, a reduction 
coefficient function ߙ௨ is now defined, leading, similarly to the scalar fluctuations, to:  
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u v p n

u v p n

N n U U

P n U U





  


   

0 1u   (59) 

It follows, for the x components, that: 

   1 (1 ) 1v p n uu n U U                      (positive) (60) 
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   2 1v p n uu n U U                     (negative) (61) 

The second order central moment for the x component of the velocity fluctuations is given by: 

       222 2 2
1 2 1 1 1v v v v u p nu u n u n n n U U        (62) 

Or, normalizing the RMS value (u’2): 
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Equation 63 shows that the relative turbulence intensity profile is obtained from the mean 
velocity profile nv and the reduction coefficient profile ߙ௨. As done by Schulz & Janzen 
(2009), the profile of ߙ௨ can be obtained from experimental data, using equation (63). 
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As can be seen, the functional form of ߙ௨ is obtainable from usual measured data, with 
exception of the proportionality constant given by 1/Up, which must be adjusted or 
conveniently evaluated. Figure 9 shows data adapted from Wei & Willmarth (1989), cited by 
Pope (2000), and the function  1v vn n is calculated from the linear and log-law profiles 
close to the wall, also measured by Wei & Wilmarth (1989).  
To obtain a first evaluation of the virtual constant velocity Up, the following procedure was 
adopted. The value of the maximum normalized mean velocity is U/u*~24.2 (measured), 
where U is the mean velocity and u* is the shear velocity. The value of the normalized RMS 
u velocity, close to the peak of U, is u’/u*~1.14. Considering a Gaussian distribution, 99.7% 
of the measured values are within the range fom U/u*-3 u’/u*. to U/u*+3 u’/u*. A first 
value of Up is then given by U+3u’, furnishing Up/u*~24.2+3*1.14~27.6. Physically it implies 
that patches of fluid with Up are “transported” and reduce their velocity while approaching 
the wall. With this approximation, the partition function is given by: 

 

1 ln 5.2
0.41

27.6 27.6v

yu
n


 

   (65) 

The value 0.41 is the von Karman constant and the value 5.2 is adjusted from the 
experimental data. The notation u+ and y+ corresponds to the nondimensional velocity and 
distance, respectively, used for wall flows. In this case, u+=U/u* and y+=zu*/, where  is 
the kinematic viscosity of the fluid. Equation (65) is the well-known logarithmic law for the 
velocity close to surfaces. It is generally applied for y+>~11. For 0<y+<~11, the linear form 
u+=y+ is valid so that equation (65) is then replaced by a linear equation between nv and y+. 
From equation (63) it follows that:  
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        (66) 
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Figure 9 shows the measured u’2 values together with the curve given by 27.6  1v vn n . As 
can be seen, the curve 27.6  1v vn n  leads to a peak close to the wall. In this case, the function 
is normalized using the friction velocity, so that the peak is not limited by the value of 0.5 (which 
is the case if the function is normalized using Up-Un). It is interesting that the forms of 2 /u u*  
and 27.6  1v vn n  are similar, which coincides with the conclusions of Janzen (2006) for mass 
transfer, using ad hoc profiles for the mean mass concentration close to interfaces.  
Figure 10 shows the cloud of points for 1-ߙ௨ obtained from the data of Wei & Willmarth 
(1989), following the procedures of Janzen (2006) and Schulz & Janzen (2009) for mass 
transfer. As for the case of mass transfer, ߙ௨ presents a minimum peak in the region of the 
boundary layer (maximum peak for 1-ߙ௨).  
 

 
Fig. 9. Comparison between measured values of u’/u* and    / * 1p v vU u n n . The gray 

cloud envelopes the data from Wei & Willmarth (1989). 

 

 
Fig. 10. 1-ߙ௨ plotted against n, following the procedures of Schulz & Janzen (2009). The gray 
cloud envelopes the points calculated using the data of Wei & Willmarth (1989). 
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As a last observation, the conclusion of section 2.7, valid for the scalar-velocity interactions, 
are now also valid for the transversal component of the velocity. The mean transversal 
velocity is null along all the flow, leading to the use of the RMS velocity for this component.  

4. Challenges 
After having presented the one-dimensional results for turbulent scalar transfer using the 
approximation of random square waves, some brief comments are made here, about  some 
characteristics of this approximation, and about open questions, which may be considered in 
future studies.  
As a general comment, it may be interesting to remember that the mean functions of the 
statistical variables are continuous, and that, in the present approximation they are defined using 
discrete values of the relevant variables. As described along the paper, the defined functions (n, 
, , RMS) “adjust” these two points of view (this is perhaps more clearly explained when 
defining the function ). This concomitant dual form of treating the random transport did not 
lead to major problems in the present application. Eventual applications in 2-D, 3-D problems or 
in phenomena that deal with discrete variables may need more refined definitions. 
In the present study, the example of mass transfer was calculated by using constant reduction 
coefficients (), presenting a more detailed and improved version of the study of Schulz et al. 
(2011a). However, it is known that this coefficient varies along z, which may introduce 
difficulties to obtain a solution for n. This more complete result is still not available. 
It was assumed, as usual in turbulence problems, that the lower statistical parameters (e.g. 
moments) are appropriate (sufficient) to describe the transport phenomena. So, the finite set of 
equations presented here was built using the lower order statistical parameters. However, 
although only a finite set of equations is needed, this set may also use higher order statistics. In 
fact, the number of possible sets is still “infinite”, because the unlimited number of statistical 
parameters and related equations still exists. A challenge for future studies may be to verify if 
the lower order terms are really sufficient to obtain the expected predictions, and if the 
influence of the higher order terms alter the obtained predictions. It is still not possible to infer 
any behavior (for example, similar results or anomalous behavior) for solutions obtained using 
higher order terms, because no studies were directed to answer such questions.  
In the present example, only the records of the scalar variable F and the velocity V were 
“modeled” through square waves. It may eventually be useful for some problems also to 
“model” the derivatives of the records (in time or space). The use of such “secondary 
records”, obtained from the original signal, was still not considered in this methodology.  
The problem considered in this chapter was one-dimensional. The number of basic functions 
for two and three dimensional problems grows substantially. How to generate and solve the 
best set of equations for the 2-D and 3-D situations is still unknown. 
Considering the above comments, it is clear that more studies are welcomed, intending to 
verify the potentialities of this methodology.  

5. Conclusions 
It was shown that the methodology of random square waves allows to obtain a closed set of 
equations for one-dimensional turbulent transfer problems. The methodology adopts a priori 
models for the records of the oscillatory variables, defining convenient functions that allow 
to “adjust” the records and to obtain predictions of the mean profiles. This is an alternative 
procedure in relation to the a posteriori “closures” generally based on ad hoc models, like the 
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use of turbulent diffusivities/viscosities, together with physical/phenomenological 
reasoning about relevant parameters to be considered in these diffusivities/viscosities. The 
basic functions are: the partition functions, the reduction coefficients and the superposition 
coefficients. The obtained transformed equations for the one-dimensional turbulent 
transport allow to obtain predictions of these functions.  
In addition, the RMS of the velocity was also used as a basic function. The equations are 
nonlinear. An improved analysis of the one-dimensional scalar transfer through air-water 
interfaces was presented, leading to mean curves that superpose well with measured mean 
concentration curves for gas transfer. In this analysis, different constant values were used 
for ߢ ,ߙ and the second derivative at the interface, allowing to obtain well behaved and 
realistic mean profiles. Using the constant ߙ values, the system of equations for one-
dimensional scalar turbulent transport could be reduced to only one equation for n; in this 
case, a third order differential equation. In the sequence, a first application of the 
methodology to velocity fields was made, following the same procedures already presented 
in the literature for mass concentration fields. The form of the reduction coefficient function 
for the velocity fluctuations was calculated from measured data found in the literature, and 
plotted as a function of n, generating a cloud of points. As for the case of mass transfer, ߙ௨ 
presents a minimum peak in the region of the boundary layer (maximum peak for 1-ߙ௨). 
Because this methodology considers a priori definitions, applied to the records of the random 
parameters, it may be used for different phenomena in which random behaviors are observed.  
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7. Appendix I: Obtaining equation (51) 
The starting point is the set of equations (45), (46), and the definition (47).  
The “*” was dropped from z* and IJ* in order to simplify the representation of the equations. 
The main equation (45) (or 50a) then is written as 

    2
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Equation (46), for 2=ߠ, is presented as: 
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Using the definitions 
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For ߙ constant and defining A=(1 −  :(ߙ
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Using equations (AI1) and (AI4)  
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Solving equation (AI5) for IJ: 
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Rearranging equation (AI6): 
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Differentiating equation (AI7) and using equation (AI1):  
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Multiplying by 
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Rearranging (after multiplying the equation by A and using S=1/ߢ): 
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Equation (AI10) is the equation (51) presented in the text.  

8. Appendix II: Solving equation (51) using mathematical tables 
Equation (51) (or equation (AI-10)) of this chapter is a third order nonlinear ordinary 
differential equation, for which adequate numerical methods must be applied. Some 
methods were considered to solve it.  
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A first attempt was made using the second order Finite Differences Method and the solver 
device from the Microsoft Excel® table, intending to solve the problem with simple and 
practical tools, but the results were not satisfactory. It does not imply that the Finite 
Differences Method does not apply, but only that we wanted more direct ways to check the 
applicability of equation (51). 
The second attempt was made using Runge-Kutta methods, also furnished in 
mathematical tables like Excel ®, maintaining the objective of solving the one-dimensional 
problem with simple tools. In this case, the results were adequate, superposing well the 
experimental data. 
The Runge-Kutta methods were developed for ordinary differential equations (ODEs) or 
systems of ODEs. Equation (AI-10) is a nonlinear differential equation, so that it was 
necessary to first rewrite it as a system of ODEs, as follows 
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Figure 6 shows that 3th, 4th and 5th orders Runge-Kutta methods were applied to obtain numerical 
results for the profile of n. This Appendix shows a summary of the use of the 5th order method. 
Of course, similar procedures were followed for the lower orders. As usual in this chapter, 
equations (AII-1) up to (AII-3) use the nondimensional variable z without the star “*” (that is, it 
corresponds to z*). Considering "y" the dependent variable in a given ODE, the of 5th order 
method, presented by Butcher (1964) appud Chapra and Canale (2006), is written as follows 
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in which 
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In the system of equations (AII-8), generated from equations (AII-4) through (AII-6), x = z 
and y = n , following the representation used in  this chapter.  
The system of equations (AII-1) through (AII-6) was solved using a spreadsheet for 
Microsoft Excel®, available at www.stoa.usp.br/hidraulica/files/. Two initial values were 
fixed and one was calculated. Note that in the present study it was intended to verify if the 
method furnishes a viable profile, so that boundary or initial values obtained from the 
experimental data were assumed as adequate. The first was n(0)=1. The second was n'(0)=-3, 
corresponding to the experiments of Janzen (2006). The third information did not constitute 
an initial value, and was n(1)=0 or 0<n(1)<0.01 (threshold value corresponding to the 
definition of the boundary layer). As the Runge-Kutta methods need initial values, this 
information was used to obtain n''(0), the remaining initial value needed to perform the 
calculations. With the aid of the Newton (or quasi-Newton) method, it was possible to 
obtain values for n''(0) that satisfied the third condition imposed at z = 1.  
The derivative of n at z=0 is generally unknown in such mass transfer problems. In this case, 
solutions must be found considering, for example, n(0)=1, 0<n(1)<0.01 and n’(1)=0 (three 
reasonable boundary conditions), for which another scheme must be developed to calculate 
the first and second derivatives at the origin. As mentioned, the aim of this study was to 
verify the applicability of the method. The details of solutions for different purposes must be 
considered by the researchers interested in that  solution. 
The construction of the spreadsheet is described in the following steps: 
i. determine the initial values: n(0) = 1, n'(0) = -3 (or other appropriate value) n''(0) = 

initial guess; 
ii. Compute ߰ଵ,ଵ and ߰ଵ,ଶ, the function values f1, f2 e f3 with the initial values, and then ߰ଵ,ଷ. In the variable ߰,, i = 1,2,...,6 and j = 1,2,3, the first index corresponds to the six 

stages of the method and the second to the order of the ODE that generated the original 
system to be solved; 

iii. With the values calculated in (ii), calculate now nk+(1/4)	߰ଵ,ଵ Δz, jk+(1/4) ߰ଵ,ଵ Δz and 
wk+(1/4) ߰ଵ,ଵ Δz. The following steps are similar until  j = 6; 

iv. Equation AII-7 (a system) is then used to advance in space z. 
The spreadsheet available at www.stoa.usp.br/hidraulica/files/ presents some suggestions 
that simplify some items of the above described steps (some manual work is simplified). The 
estimate of n”(0), for example, is obtained  following simplified procedures.   
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1. Introduction 
A system of hydrodynamic equations for a viscous, heat conducting fluid is usually derived 
on the basis of the mass, the momentum and the energy conservation laws (Landau & 
Lifshitz, 1986). Certain assumptions about the form of the viscous stress tensor and the 
energy density flow vector are made to derive such a system of equations for the dissipative 
viscous, heat conductive fluid. The system of equations based on the mass, the momentum 
and the energy conservation laws describes adequately a large set of hydrodynamical 
phenomena. However, there are some aspects which suggest that this system is only an 
approximation.  
For example, if we consider propagation of small perturbations described by this system, 
then it is possible to separate formally the longitudinal, shear and heat or entropy waves. 
The coupling of the longitudinal and heat waves results in their splitting into independent 
acoustic-thermal and thermo-acoustic modes. For these modes the limits of phase velocities 
tends to infinity at high frequencies so that the system is in formal contradiction with the 
requirements for a finite propagation velocity of any perturbation which the medium can 
undergo. Thus it is possible to suggest that such a hydrodynamic equation system is a mere 
low frequency approximation. Introducing the effects of viscosity relaxation (Landau & 
Lifshitz, 1972), guarantees a limit for the propagation velocity of the shear mode, and the 
introduction of the heat relaxation term (Deresiewicz, 1957; Nettleton, 1960; Lykov, 1967) in 
turn ensures finite propagation velocities of the acoustic-thermal and thermo-acoustic 
modes. However, the introduction of such relaxation processes requires serious effort with 
motivation. 
Classical mechanics provides us with the Lagrange’s variational principle which allows us 
to derive rigorously the equations of motion for a mechanical system knowing the forms of 
kinetic and potential energies. The difference between these energies determines the form of 
the Lagrange function. This approach translates directly into continuum mechanics by 
introduction of the Lagrangian density for non-dissipative media. In this approach the 
dissipation forces can be accounted for by the introduction of the dissipation function 
derivatives into the corresponding equations of motion in accordance with Onsager’s 
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principle of symmetry of kinetic coefficients (Landau & Lifshitz, 1964). There is an 
established opinion that for a dissipative system it is impossible to formulate the variational 
principle analogously to the least action principle of Hamilton (Landau & Lifshitz, 1964). At 
the same time there are successful approaches (Onsager, 1931a, 1931b; Glensdorf & 
Prigogine, 1971; Biot, 1970; Gyarmati, 1970; Berdichevsky, 2009) in which the variational 
principles for heat conduction theory and for irreversible thermodynamics are applied to 
account explicitly for the dissipation processes. In spite of many attempts to formulate a 
variational principle for dissipative hydrodynamics or continuum mechanics (see for 
example (Onsager, 1931a, 1931b; Glensdorf & Prigogine, 1971; Biot, 1970; Gyarmati, 1970; 
Berdichevsky, 2009) and references inside) a consistent and predictive formulation is still 
absent. Therefore, there are good reasons to attempt to formulate the generalized 
Hamilton’s variational principle for dissipative systems, which argues against its established 
opposition (Landau & Lifshitz, 1964). Thus the objective of the chapter is a new formulation 
of the generalized variational principle (GVP) for dissipative hydrodynamics (continuum 
mechanics) as a direct combination of Hamilton’s and Osager’s variational principles. The 
first part of the chapter is devoted to formulation of the GVP by itself with application to the 
well-known Navier-Stokes hydrodynamical system for heat conductive fluid. The second 
part of the chapter is devoted to the consistent introduction of viscous terms into the 
equation of fluid motion on the basis of the GVP. Two different approaches are considered. 
The first one dealt with iternal degree of freedom described in terms of some internal 
parameter in the framework of Mandelshtam – Leontovich approach (Mandelshtam & 
Leontovich, 1937). In the second approach the rotational degree of freedom as independent 
variable appears additionally to the mean mass displacement field. For the dissipationless 
case this approach leads to the well-known Cosserat continuum (Kunin, 1975; Novatsky, 
1975; Erofeev, 1998). When dissipation prevails over angular inertion this approach 
describes local relaxation of angular momentum and corresponds to the sense of internal 
parameter. Finally, it is shown that the nature of viscosity phenomenon can be interpreted 
as relaxation of angular momentum of material points on the kinetic level. 

2. Generalized variational principle for dissipative hydrodynamics 
2.1 Hamilton’s variational principle 
The non-dissipative case of Hamilton’s variational principle can be formulated for a 
continuous medium in the form of the extreme condition for the action functional 0Sδ = : 

 
2

1

t

t V

S dt drL=  
 , (1) 

which is an integral over the time interval ( 1t , 2t ) and the initial volume V  of a given mass 
of a continuum medium in terms of Lagrangian’s coordinates. From the principles of 
particle mechanics the Lagrangian density L  is represented as the difference between the 
kinetic K  and potential U  energies:  

 ( , ) ( ) ( )L u u K u U u∇ = − ∇     . (2) 

Expression (2) implies that the Lagrangian can be considered as a function of the velocities 

of the displacements u
u

t
∂=
∂

  and deformations ( )u div u∇ =  .  
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The motion equations derived from variational principles (1), (2) have the following form  

 0d L L
dt uu

∂ ∂+ ∇ =
∂∇∂
 . (3) 

In the simplest case, when the kinetic and potential energies are determined by the 
quadratic forms  

 
2 2

02 ( )K u uρ=   ,   2 22 2ll ikU λε με= + ,   1
2

i k
ik

k i

u u
x x

ε
 ∂ ∂= + ∂ ∂ 

 (4) 

the well-known equation of motion for an elastic medium (Landau & Lifshitz, 1972) can be 
derived:  

 0 ( ) ( ) 0d
u u u

dt
ρ μ λ μ− Δ − + ∇ ∇ =   , (5) 

where 0ρ  is the density of the medium, and λ  and μ  are the Lamé’s constants. 

2.2 Onsager’s variational principle 
If we consider quasi-equilibrium systems, then the Onsager’s variational principle for least 
energy dissipation can be formulated (Onsager, 1931a, 1931b). This principle is based on the 
symmetry of the kinetic coefficients and can be formulated as the extreme condition for the 
functional constructed as the difference between the rate of increase of entropy, s , and the 
dissipation function, D . Here the entropy s  is considered as a function of some 
thermodynamic relaxation process α , and the dissipation function D as a function of the 
rate of change of α , i.e. 

 [ ]( ) ( ) 0s Dαδ α α− =  
. (6) 

The kinetic equation can then be derived from variational principle (6) to describe the 
relaxation of a thermodynamic system to its equilibrium state, i.e.:  

 ( ) 2 ( )d
s D

dt
α α=  . (7) 

The above equation satisfies strictly the symmetry principle for the kinetic coefficients 
(Landau & Lifshitz, 1986).  

2.3 Variational principle for mechanical systems with dissipation 
As was mentioned above, the generalization of the equation of motion (3) in the presence 
of dissipation is obtained by introducing the derivative of the dissipation function with 
respect to the velocities into the right hand side of the equation (3). Therefore, in 
accordance with Onsager’s symmetry principle for the kinetic coefficients (Landau & 
Lifshitz, 1964) we have  

 d L L D
dt uu u

∂ ∂ ∂+ ∇ = −
∂∇∂ ∂
   . (8) 
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Now it is possible to show, that the equation of motion can be derived in the form of 
equation (8) if Hamilton’s variational principle is adapted with the following form of the 
Lagrangian function: 

 
0

( , ) ( ) ( ) ( )
t

L u u K u U u D u dt′∇ = − ∇ − 
       , (9) 

where the time integral of the dissipation function is introduced into equation (2). The initial 
time in integral (9) denoted for simplicity equal to 0 corresponds to the time 1t  in functional (1). 
It needs, however, to pay attention that at variation of dissipative term in such approach an 
additional item appears, which has to be neglected by hands. Indeed, variation of the last 
term in (9) leads us to result  

 
0 0 0 0

( ) ( ) ( )( )
t t t tD u d D u d D u
D u dt udt u dt udt

dt dtu u u
δ δ δ δ

   ∂ ∂ ∂′ ′ ′ ′= = −   ′ ′∂ ∂ ∂   
   

              (10a) 

If to neglect by the last item in this expression  

 
0 0

( ) ( ) ( )( ( )) ( ) ( )
t tD u d D u D u
D u t dt u t udt u t

dtu u u
δ δ δ δ

 ∂ ∂ ∂′ ′ ′= − ≈ ′∂ ∂ ∂ 
 

             , (10b) 

then the result gives us the same term ( )D u
u

∂
∂


 , which we need artificially introduce in the 

motion equation (8) for account of dissipation. From the one hand this approach can be 
considered as some rule at variation of integral term, because it leads us to the required 
form of the motion equation (8). From the other hand the following supporting basement 
can be proposed. Variation of action containing all terms in Lagrangian (9) with account of 
initial and boundary conditions can be written in the form 

 
2

1 0

( ) ( ) ( ) ( )t t

t

d K u U u D u d D u
dt dV u udt

dt u dtu u u
δ δ

    ∂ ∂ ∇ ∂ ∂ ′− + ∇ − + =    ′∂∇∂ ∂ ∂     
  

      
      (11a) 

It is seen from (11a) that the required form of the motion equation with dissipation arises 
due to zero value of coefficient at arbitrary variation of the displacement field uδ  . The last 
additional item, containing variation uδ   under integral, prevent to the strict conclusion in 
the given case. Nevertheless, if to rewrite the first term in (11a)  in the same integral form as 
the last term  

 
2

1 0

( ) ( ) ( ) ( )( )
t t

t

d K u U u D u d D u
dt dV dt t t u

dt u dtu u u
δ δ
    ∂ ∂ ∇ ∂ ∂ ′ ′= − − + ∇ − +    ′ ′∂∇∂ ∂ ∂     

  
      

      (11b) 

then due to the same reason of arbitrary variation uδ   the multiplier in brackets at this 

variation has to be equal to zero. It is possible to see now, that, if the function ( )d D u
dt u

 ∂
 ′ ∂ 


  is 
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not singular in the point t t′ = , then its contribution can be neglected in this point in 
comparison with singular contribution from delta-function. The presented arguments can be 
considered as a basis for variation rule of integral term in Lagrangian.  
In particular, if the dissipation function is considered as a quadratic form of the deformation 
velocities, i.e.:  

 
2 2

2 ( ) i k l

k i l

u u u
D u

x x x
η ς
   ∂ ∂ ∂′ ′∇ = + +   ∂ ∂ ∂   

   , (12) 

then the derived equation of motion with account of (4) corresponds to the linearized 
Navier–Stokes equation:  

 0 ( ) ( ) ( )
3

d
u u u u u

dt
ηρ λ μ λ η ς − + Δ − ∇ ∇ = Δ + + ∇ ∇ 

 

       , (13) 

where the shear and volume viscosities, η  and ς  respectively are given by / 2η′  and 
4
3

ς η′ ′+  respectively, from the constants in (12). 

2.4 Independent variables 
When GVP is formulated in the form (9) we need to determine variables in which terms the 
Lagrange’s function has to be expressed. To answer on this question let’s return to the 
hydrodinamics equations and look at variables for their description.  
In absence of dissipation, as it easy to see, these variables are velocity, density, pressure and 
entropy , , ,v P sρ . For the dissipationless case the entropy holds to be constant for given 
material point, hence a pressure can be considered, for example, as a function of solely 
density ( , )P s constρ = . The density of the given mass of continuum is expressed in terms of 
its volume. Hence variation of density can be expressed in terms of variation of volume or 
through divergence of the displacement field ( )divuρ ρ=  . In particular, linearization of the 
continuity equation leads to relation  

 0(1 )divuρ ρ= −   (14) 

Velocity by definition is a time derivative from displacement v u=  . Thus, the displacement 
field u

  can be considered as the principal hydrodinamical variable for the dissipationless 
case.  
In the presence of dissipation, the hydrodynamic equations also involve the temperature T , 
implying in the following set of variables: , , , ,v P s Tρ . If pressure and entropy depend on 
density and temperature ( , ), ( , )P T s Tρ ρ  in accordance to the state equation, then the fields 
of displacements and temperatures: ,u T

  can be considered as the principal hydrodynamical 
variables.  
Further, we will adopt the idea of Biot (Biot, 1970), and introduce some vector field Tu

  
(some vector potential), called the heat displacement, as independent variable instead 
temperature, so that the relative deviation of temperature T from its equilibrium state 0T  is 
determined by the divergence of the field Tu

 . Namely in analogy with (14)  

 0(1 )TT T divuθ= −   (15a) 
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where θ  is some dimensionless constant which is specially introduced in definition (15a) 
for simplification of the expression for the dissipation function. Thus, the divergence of the 
heat displacement field Tu

  determines temperature deviation from its equilibrium level 

 0

0
T

T T
u

T
θ− = − ∇ . (15b) 

2.5 Generalized variational principle (GVP) for dissipative hydrodynamics 
The above example (12), (13) of the derivation of the equation of motion for dissipative 
systems on the basis of Hamilton’s variational principle with the Lagrange’s function (9) 
suggests the possibility of formulating a generalized variational principle for dissipative 
hydrodynamical systems. This formulation can be obtained by a simple combination of 
Hamilton’s variational principle (eqs. (1) and (2)) and Onsager’s variational principle (eq. 
(6)), if the latter is integrated over time and multiplied by a temperature term (Maximov , 
2008, 2010, originally formulated by Maximov , 2006). The Lagrangian density in this case 
can be written in the following form:  

 
0 0

t t

L K E T s Ddt K F T Ddt
 

′ ′= − + − = − − 
  

  , (16) 

where E  and F  are the internal energy (potential for the dissipationless case) and the free 
energy  respectively. For the non-dissipative case, the Lagrangian depends on the time and 
spatial derivatives of the mean mass displacement field u

 , which is a basic independent 
variable in this formulation. For the dissipative case, the temperature should be considered 
as an additional independent variable for a complete description. Hence, a free energy and 
dissipation function should also depend on the temperature variations. But temperature by 
itself is not a convenient variable here. Instead it is more convenient to consider the heat 
displacements Tu

  , introduced in previous section, of which the divergence will give us 
temperature.  
In this case the generalized Lagrangian can be written in the following form:  

 0
0

( , , ) ( ) ( , ) ( , )
t

T T TL u u u K u F u u T D u u dt′∇ ∇ = − ∇ ∇ − 
           . (17) 

It is important to note here that the opportunity to formulate the variational principle for a 
dissipative system arises due to the energy conservation for two interacting fields: the mean 
mass displacement u

  and the heat displacement Tu
 . The dissipation function only plays a 

role in the transformation rate between these fields. 
In this way the motion equations derived by variation of action with the Lagrangian (17), 
can be expressed in the following forms  

0
d K F D

T
dt uu u

∂ ∂ ∂− ∇ = −
∂∇∂ ∂
   , 

(18) 

0 0
TT

D F
T

uu
∂ ∂− ∇ =

∂∇∂
 . 
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Taking into account that the kinetic energy is given by quadratic form (4), the free energy is 
given by its usual expression for thermo-elasticity in quadratic form (Landau  & Lifshitz, 
1972): 

 
2

2 2 0 0

0 0
2 ( , ) 2 2ik ll ll

T T T T
F u T

T T
με λε κ αε

θ θ
   − −∇ = + + +   
   

   , (19a) 

or with substitution of expression (13) instead of the temperature terms: 

 ( ) ( )22 22 ( , ) 2 2T ik ll T ll TF u u u uμε λε κ αε∇ ∇ = + + ∇ + ∇    
, (19b) 

The dissipation function is the square of the difference between the mean mass and the heat 
displacements  

 
22 ( , ) ( )T TD u u u uβ= −      

. (20) 

The meanings of the coefficients κ , α  and β  in quadratic forms (19), (20) will be defined in 
the next section by comparison with the classical Navier-Stokes hydrodynamical system of 
equations. 
In this case the motion equations for the mean displacement field and for the temperature 
field derived on the basis of the generalized variational principle are just equivalent (at 

0μ = ) to the linearized traditional system of hydrodynamics equations: 

 0 0( ) ( ) ( ) /( )d
u u u T T

dt
ρ μ λ μ α α κ θ− Δ − + + ∇ ∇ = + ∇       (21) 

 0 0( )T T u T T uβ θ κ α θ− ∇ − Δ = Δ∇    . (22) 

2.6 Comparison with the system of hydrodynamics equations 
Coefficients of the quadratic forms in equations (19) and (20) can be determined by 
comparison between the system of equation (21) and (22) and the linearized system of 
hydrodynamics equations (Landau  & Lifshitz, 1986)  considering the variables ,u T

 :  

 0(1 )uρ ρ= − ∇  , (23) 

 ( )
2

2
0 0 0 02 3

d u
c u T u u

dt
ηρ ρ ρ α η ζ − Δ = − ∇ + Δ + + ∇ ∇ 

 

     , (24) 

 0 0 0 0V
dT

C T u T
dt

ρ ρ α κ ′+ ∇ − Δ = . (25) 

where 0c  is the isothermal sound velocity, VC  - the heat capacity at constant volume, κ  the 
heat conductivity coefficient, and α  the thermal expansion coefficient. In the absence of 
viscosity 0η =  and 0ς = , which was not taken into account in the dissipation function (20), 
the structure of equations (21), (22) nearly coincides with the second (24) and the third (25) 
equations in the system of hydrodynamics equations (Landau  & Lifshitz, 1986). The only 
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difference is the additional term in the right part of equation (22) in comparison with (25). 
We note here briefly that the reason for the introduction of this term is related to a 
generalized form of the Fourier law for heat energy flow. Besides the term of the 
temperature gradient in the Fourier law, an additional density or pressure gradient term 
should appear in spite of the contradicting argument presented in (Landau  & Lifshitz, 
1986). The independent support of this result can be found in refs. (Martynov, 2001;  
Zhdanov  &  Roldugin 1998).  
The coefficients of equations (21), (22) and (24), (25) for the fluid case ( ( ) 0rot u =  ) can be 
found by comparison. One needs to take into account the different dimensions of equation 
(22) and (25), and, hence, the presence of common dimension multiplier in the comparison 
of coefficients for these equations. 
The parameters of the quadratic forms are expressed explicitly in terms of the physical 
parameters by the following expressions 

 ( )
2

20 0 1cρβ γ
χ

= − , 
0

1
T

γθ
α

−= − , ( )2
0 0 1cα ρ γ= − , 2

0 02 cλ μ ρ γ+ = , ( )2 2
0 0 1cκ ρ γ= − , (26) 

where γ  is the specific temperature ratio, /P VC Cγ = , and 0/ VCχ κ ρ=  is the temperature 
conductivity coefficient. It is remarkable that the coefficient in the dissipation function β  is 
inversely proportional to the temperature conductivity coefficient. 

3. Viscous terms in dissipative hydrodynamics 
3.1 Account of viscosity relaxation for a fluid 
To take into account fluid viscosity in the equation of motion in the framework of the 
generalized variational principle it is possible to introduce additional internal parameters to 
describe the quasi-equilibrium state of the medium, analogous to the Mandelshtam – 
Leontovich approach (Mandelshtam & Leontovich, 1937). As will be shown, in order to 
describe both the shear and the volume viscosities simultaneously, this internal parameter 
needs to possess the properties of a tensor. To simplify the description we consider the case 
when the temperature variation variable T  is not essential so that the heat displacement Tu

  
terms can be omitted. In this case the additional terms associated with the tensor internal 
parameter ikξ , will appear in the expression for the free energy of an elastic medium (19), 
and it can be written as:  

 2 2 2 2
1 2 1 22 ( , ) 2 2 2ij ik ll ll ik kk ll ik kiF u a a b bξ με λε ξ ξ ξ ε ξ ε∇ = + + + + + , (19c) 

where ia  and ib  are some coefficients of a positively determined quadratic form. The 
kinetic energy is then given by the ordinal expression (4) and the dissipative function in the 
absence of the temperature term can be written as the following quadratic form:  

 2 2
1 22 ( )ij ll ikD ξ γ ξ γ ξ= +    (27) 

with some coefficients 1γ , 2γ . 
The system of motion equations, derived on the basis of the generalized variational 
principle for this case can be rewritten as  
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 0 1 2( ) ( ) 0ik
ll

k

d
u u u b b

dt x
ξρ μ λ μ ξ ∂− Δ − + ∇ ∇ − ∇ − =

∂
   , (28) 

 1 2 1 2 1 2 0ll ik
ik ik ll ik ik ik

d d
a a b u b

dt dt
ξ ξγ δ γ δ ξ ξ δ ε+ + + + ∇ + = . (29) 

Here in the first equation (28) we safe for shortness the tensor notation for vector obtained 
as divergence of internal parameter tensor. Equation (28) is the motion equation for an 
elastic medium. Equation (29) is the kinetic equation for the internal parameter tensor ikξ . 
Convolving the kinetic equation by indexes it is possible to obtain the separate kinetic 
equation for the spherical part of the internal parameter tensor llξ : 

 0ll
ll ll

d
a b

dt
ξγ ξ ε+ + =  , (30) 

where the coefficients with tilde have the following meaning: 

 1 23γ γ γ= + , 1 23a a a= + , 1 23b b b= +  (31) 

Kinetic equation (29) is an inhomogeneous ordinary differential equation of the first order. 
Its solution can be written as: 

 
( )

( )
at t t

ll ll
b

e t dtγξ ε
γ

′− −

−∞

′ ′= − 






 (32) 

For the other components of the internal tensor parameter ikξ  we can also obtain a kinetic 
equation of similar form to equation (29), but with added inhomogeneous terms, i.e. 

 2 2 2 1 1 0ik
ik ik ik ll ik ll

d
a b a b

dt
ξγ ξ ε δ ξ δ ε+ + + + =  (33) 

where the following notations are introduced  

1
1 1a a a

γ
γ

 
= − 
 

 


, 

 1
1 1b b b

γ
γ

 
= − 
 

 


 (34) 

Again, the solution of equation (33) has a form analogous to expression (32) with additional 
contributions from the terms with multipliers 1a  and 1b . Specifically,  

2

2
( ) ( )

2 1 2 2 1 1 1

2 2 2 2 2 2

( ) ( )1
( ) ( )

a at tt t t t

ik ik ik ll ik ll
b b a a b a a

dt e dt e
b a a a a

γ γγ γ γ γξ ε δ ε δ ε
γ γ γ γ γ γ

′− − ′− −

−∞ −∞

  − −′ ′= − − − −    − −  
 




   
    

 (35) 

Taking the divergence of tensor (35), we obtain the following vector  
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( )
2

2
( )

2 1 2 2 1

2 2 2 2

1 ( )( ) ( ) 1
2 ( )

at t t
ik

k

b b a a
dt e u u u

x b a a
γξ γ γ

γ γ γ

′− −

−∞

  ∂ −′= − Δ + ∇ ∇ − ∇ ∇ − −    ∂ −  


  
 

 

(36) 
( )

1 1

2 2

( ) ( )
( )

at t tb a a
dt e u

a a
γγ γ

γ γ γ

′− −

−∞

− ′− ∇ ∇
− 




   
  

 

If we substitute (36) and (32) in the motion equation (28), we can write:  

( )
1 1

0 1 2
2 2

( )( ) ( ) ( )
( )

at t td b a a
u u u b b dt e u

dt a a
γγ γρ μ λ μ

γ γ γ

′− −

−∞

 − ′− Δ − + ∇ ∇ =− − ∇ ∇ − − 





     
  

 

(37) 

( )
2

2
2 ( )
2 1 2 2 1

2 2 2 2

1 ( )( ) ( ) 1
2 ( )

at t tb b a a
dt e u u u

b a a
γ γ γ

γ γ γ

′− −

−∞

  −′− Δ + ∇ ∇ − ∇ ∇ −    −  


  
 

 

In the low frequency limit, at times greater than the relaxation times / aγ   and 2 2/ aγ , it is 
possible to derive an equation analogous to the Navier – Stokes motion equation with shear 
and volume viscosities: 

 0 ( ) ( ) ( ) ( )
3

d
u u u u u

dt
ηρ μ λ μ η ζ− Δ − + ∇ ∇ = Δ + + ∇ ∇
          (38) 

where the effective elastic moduli λ and μ  and coefficients of shear and volume viscosities 
are expressed as  

2
2

22
b
a

μ μ= − ,
 

2
2 1 1

1 2
2 2 2

( )
2 ( )
b b a a

b b
a a a a

γ γλ λ
γ γ

 −= + − − − 

  
   ,

 

2
2

2 2
2

1
2

b
a

η γ= ,
 

(39) 

1 1 2 2 1 2 2 1
1 2 22 2

2 2 2 22

( ) ( )
3 ( ) 2 ( )

b a a b b a a
b b b

a a a aa a
η γ γ γ γζ γ γ

γ γ γ γ
   − −+ = − − −   − −   

    
   

 

It is important to note that the structure of the effective shear modulus μ  in (39) is 
determined by a difference, which can be equal to zero, in which case equation (38) 
becomes completely equivalent to the Navier – Stokes equation for a viscous fluid. Thus 
the condition 

 
2
2

22
b
a

μ =  (40) 

should be satisfied to consider a solid with shear relaxation like a viscous fluid. If 0μ > , 
then we have the case of elastic medium with a shear viscosity (the Voight’s model) or with 
relaxation in the more general case (37). Thus, in the framework of the uniform approach it 
is possible to describe viscous fluids and solids with visco-elastic properties.  
As a final remark of this section it is possible to say several words about physical sense of 
the introduced internal parameter. Since in the low frequency limit the majority of gases and 
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fluids, including the simplest of them, is described by the Navier-Stokes equation, then the 
only available value, which could relax in all cases, and hence could be considered as 
common scalar internal parameter, is the mean distance between molecules in gas or liquid. 
In the condensed and especially in the solid media the mutual space placement of atoms 
becomes to be essential, hence a space variation of their mutual positions, holding rotational 
invariance of a body as whole, has to be described by symmetrical tensor of the second 
order. Hence the corresponding internal parameter could be the same tensor. Thus, the 
discrete structure of medium on the kinetic level predetermines existence, at least, of 
mentioned internal parameters, responsible for relaxation. 

3.2 Shear viscosity as a consequence of the angular momentum relaxation for the 
hydrodynamical description of continuum mechanics 
As shown in the previous section, it is possible to derive the system of hydrodynamical 
equations on the GVP basis for viscous, compressible fluid in the form of Navier-Stokes 
equations. However for the account of terms responsible for viscosity it is required to 
introduce some tensor internal parameter ikξ  in agreement with Mandelshtam-Leontovich 
approach (Mandelshtam & Leontovich, 1937). Relaxation of this internal parameter provides 
appearance of viscous terms in the Navier-Stokes equation. It is worth mentioning that the 
developed approach allowed to generalize the Navier-Stokes equation with constant 
viscosity coefficient to more general case accounting for viscosity relaxation in analogy to 
the Maxwell’s model (Landau & Lifshitz, 1972). However the physical interpretation of the 
tensor internal parameter, which should be enough universal due to general character of the 
Navier-Stokes equation, requires more clear understanding. On the intuition level it is clear 
that corresponding internal parameter should be related with neighbor order in atoms and 
molecules placement and their relaxation. In the present section such physical interpretation 
is represented. 
As was mentioned in Introduction the system of hydrodynamical equations in the form of 
Navier-Stokes is usually derived on the basis of conservation laws of mass M , momentum 
P


 and energy E . The correctness of equations of the traditional hydrodynamics is 
confirmed by the large number of experiments where it is adequate. However the 
conservation law of angular momentum M


 is absent among the mentioned balance laws 

laying in the basis of traditional hydrodynamics. In this connection it is interesting to 
understand the role of conservation law of angular momentum M


 in hydrodynamical 

description. It is worth mentioning that equation for angular momentum appeared in 
hydrodynamics early (Sorokin, 1943; Shliomis, 1966) and arises and develops in the 
momentum elasticity theory. The Cosserat continuum is an example of such description 
(Kunin, 1975; Novatsky, 1975; Erofeev, 1998). However some internal microstructure of 
medium is required for application of such approach. 
In the hydrodynamical description as a partial case of continuum mechanics the definition 
of material point is introduced as sifficiently large ensemble of structural elements of 
medium (atoms and molecules) that on one hand one has to describe  properties of this 
ensemble in statistical way and on the other one has to  consider the size of material point as 
small in comparison with specific scales of the problem. A material point itself as closed 
ensemble of particles possesses the following integrals of motion: mass, momentum, energy 
and angular momentum.  
The basic independent variables, in terms of which the hydrodynamical description should 
be constructed, are the values which can be determined for separate material point in 
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accordance with its integrals of motion: mean mass displacement vector u
  (velocity of this 

displacement /v u t= ∂ ∂   is determined by integrals of motion /v P M=
 ), rotation angle ϕ  

(angular velocity of rotation ϕΩ =
   is determined by integrals of motion /M IΩ =


, where 

I  - inertia moment) and heat displacement Tu
 , determining variation of temperature and 

related with integral of energy E .  
In accordance with the set of independent field variables we can represent the kinetic K  and  
the free F  energies as corresponding quadratic forms  

 2 22K u Iρ ϕ= +    (41) 

 2 2 2 2 22 ( 2 )( ) [ ] 2 [ ] ( ) ( ) [ ]F u u uλ μ μ δϕ σ ϕ ε ϕ ς ϕ= + ∇ + ∇ + ∇ + + ∇ + ∇        (42) 

Taking into account that the dissipation dealt only with field of micro rotations, and 
omitting for shortness dissipation of mean displacement field, described by heat 
conductivity, we can write the dissipation function in the following form   

 22D γϕ=   (43) 

Equations of motion derived from GVP without temperature terms have the forms:  

 [ ]
[ ]

d K F F D
dt u uu u

∂ ∂ ∂ ∂− ∇ − ∇ = −
∂∇ ∂ ∇∂ ∂
     (44a) 

 [ ]
[ ]

d K K F F D
dt ϕ ϕ ϕϕ ϕ

∂ ∂ ∂ ∂ ∂+ − ∇ − ∇ = −
∂ ∂∇ ∂ ∇∂ ∂
      (45a) 

Without dissipation 0β =  the motion equations obtained with use of quadratic forms (41)-
(43) correspond to the ones for Cosserat continuum (Kunin, 1975; Novatsky, 1975; Erofeev, 
1998). Indeed for this case the equations (44) have forms: 

 ( 2 ) ( ) [ [ ]] [ ] 0d
u u u

dt
ρ λ μ μ δ ϕ− + ∇ ∇ + ∇ ∇ − ∇ =     (44b) 

 ( ) [ [ ]] [ ] 0d
I u

dt
ϕ ε ϕ ς ϕ σϕ δ− ∇ ∇ + ∇ ∇ + + ∇ =      (45b) 

The explicit form of these equations confirms that they are indeed the Cosserat continuum. 
If one sets formally 0δ = , then equations (44b) and (45b) are split and the equation (44b) 
reduces to ordinal equation of the elasticity theory and the equation (45b) represents the 
wave equation for angular momentum.  
When dissipation exists the system of equations (44)-(45) contains additional terms 
responsible for this dissipation  

 ( 2 ) ( ) [ [ ]] [ ] 0u u uρ λ μ μ δ ϕ− + ∇ ∇ + ∇ ∇ − ∇ =     (44c) 

 ( ) [ [ ]] [ ]I uϕ ε ϕ ς ϕ σϕ δ γϕ− ∇ ∇ + ∇ ∇ + + ∇ = −        (45c) 

For the case 0ε = , 0ς =  and 0I =  the second equation (45c) reduces to the pure relaxation 
form: 
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 [ ]u
σ δϕ ϕ
γ γ

= − − ∇    (46) 

Its solution can be represented in the form: 

 
( )

[ ]
t t t

dt e u
σ
γδϕ

γ

′− −

−∞

′= − ∇
   (47a) 

Substitution (47a) in (44c) leads to the following result  

 
2 ( )

( 2 ) ( ) [ [ ]] [ [ ]]
t t t

u u u dt e u
σ
γδρ λ μ μ

γ

′− −

−∞

′− + ∇ ∇ + ∇ ∇ = − ∇ ∇
     (48a) 

For the case of large times / 1tσ γ >>  the upper limit of integration gives the principal 
contribution and equation reduces to the form  

 
2 2

2( 2 ) ( ) [ [ ]] [ ]u u u u
δ δρ λ μ μ γ
σ σ

 
− + ∇ ∇ + − ∇ ∇ = ∇  

 

      (48b) 

By the reason that the medium at large times should behave like a fluid then the following 
condition has to be satisfied 

 
2

0δμ
σ

− =  (49) 

Taking into account condition (49) let’s make more accurate estimation of the integral, 
computing it  by parts  

 
2 ( )

( 2 ) ( ) [ [ ]]
t t t

u u dt e u
σ
γδρ λ μ

σ

′− −

−∞

′− + ∇ ∇ = − ∇ ∇
     (48c) 

The corresponding estimation for the large time limit /t γ σ>>  reduces to the equation  

 
2

2( 2 ) ( ) [ [ ]]u u u
μρ λ μ γ
δ

− + ∇ ∇ = ∇ ∇     (48d) 

which coincides with the structure of Navier-Stokes equation in the presence of shear 
viscosity.  
Let’s consider the case with non zero moment of inertia 0I ≠ . For this case the second 
equation (45c) is also local in space and it can be resolved for the function ϕ  in Fourier 
representation ( t ω→ ) 

 2 [ ]u
I i

δϕ
ω ωγ σ

−= ∇
− + +

   (50) 

The zeros of the denominator  

 ( )2
1,2

1 4
2

i I
I

ω γ γ σ= − ± −  (51) 
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determine two modes of angular momentum relaxation. Under condition 2 /(4 )I γ σ<  both 
zeros are real and have the following asymptotics for small momentum of  inertia 0I → : 

 1i
σω
γ

≈ −          2i
I
γω ≈ −  (52) 

The first zero does not depend on momentum of inertia I  and the second root goes to 
infinity when 0I → . Under condition 2 /(4 )I γ σ=  the zeros coincide and have the value 

1 2i
σω
γ

≈ − , and under the condition 2 /(4 )I γ σ>  the zeros are complex conjugated with 

negative real part, which decreases with increase of I . The last case corresponds to the 
resonant relaxation of angular momentum.  
In the time representation the solution of the equation (50) can be written in the form  

 
( )

2 2 ...[ ] ( )
2...

t t t
Idt e u sh t t

I

γ δϕ
′− −

−∞

   ′ ′= − ∇ −      


   (47b) 

here the notation 2... 4 Iγ σ= −  is used. For the case of resonant relaxation 2 /(4 )I γ σ>  
the corresponding expression has the form  

 
( )

2
...2[ ] sin ( )

2...

t t t
Idt e u t t

I

γ δϕ
′− −

−∞

    ′ ′= − ∇ −     


   (47c) 

Substitution of the explicit expressions (47b) or (47c) in the equation (44c) gives the 
generalisation of the Navier – Stokes equation for a solid medium with local relaxation of 
angular momentum. As was mentioned above under special condition (49) and in the 
limiting case (52) this equation reduces exactly to the form of Navier – Stokes equation. 
Thus, it is shown that relaxation of angular momentum of material points consisting a 
continuum can be considered as physical reason for appearance of terms with shear 
viscosity in Navier-Stokes equation. Without dissipation additional degree of freedom  dealt 
with angular momentum leads to the well known Cosserat continuum. 

4. Conclusion 
The first part of the chapter presents an original formulation of the generalized variational 
principle (GVP) for dissipative hydrodynamics (continuum mechanics) as a direct 
combination of Hamilton’s and Onsager’s variational principles. The GVP for dissipative 
continuum mechanics is formulated as Hamilton’s variational principle in terms of two 
independent field variables i.e. the mean mass and the heat displacement fields. It is 
important to mention that existence of two independent fields gives us opportunity to 
consider a closed mechanical system and hence to formulate variational principle. 
Dissipation plays only a role of energy transfer between the mean mass and the heat 
displacement fields. A system of equations for these fields is derived from the extreme 
condition for action with a Lagrangian density in the form of the difference between the 
kinetic and the free energies minus the time integral of the dissipation function. All 
mentioned potential functions are considered as a general positively determined quadratic 



Generalized Variational Principle for Dissipative Hydrodynamics: Shear Viscosity  
from Angular Momentum Relaxation in the Hydrodynamical Description of Continuum Mechanics 

 

49 

forms of time or space derivatives of the mean mass and the heat displacement fields. The 
generalized system of hydrodynamical equations is then evaluated on the basis of the GVP. 
At low frequencies this system corresponds to the traditional Navier – Stokes equation 
system. It allowed us to determine all coefficients of quadratic forms by direct comparison 
with the Navier – Stokes equation system. 
The second part of the chapter is devoted to  consistent introduction of viscous terms into 
the equation of fluid motion on the basis of the GVP. A tensor internal parameter is used for 
description of relaxation processes in vicinity of  quasi-equilibrium state by analogy with the 
Mandelshtam – Leontovich approach. The derived equation of motion describes  the 
viscosity relaxation phenomenon and generalizes the well known Navier – Stokes equation. 
At low frequencies the equation of fluid motion reduces exactly to the form of Navier – 
Stokes equation. Nevertheless there is still a question about physical interpretation of the 
used internal parameter. The answer on this question is presented in the last section of the 
chapter. 
It is shown that the internal parameter responsible for shear viscosity can be interpreted as a 
consequence of relaxation of angular momentum of material points constituting a 
mechanical continuum. Due to angular momentum balance law the rotational degree of 
freedom as independent variable appears additionally to the mean mass displacement field. 
For the dissipationless case this approach leads to the well-known Cosserat continuum. 
When dissipation prevails over momentum of inertion this approach describes local 
relaxation of angular momentum and corresponds to the sense of the internal parameter. It 
is important that such principal parameter of Cosserat continuum as the inertia moment of 
intrinsic microstructure can completely vanish from the description for dissipative 
continuum. The independent equation of motion for angular momentum in this case 
reduces to local relaxation and after its substitution into the momentum balance equation 
leads to the viscous terms in Navier – Stokes equation. Thus, it is shown that the nature of 
viscosity phenomenon can be interpreted as relaxation of angular momentum of material 
points on the kinetic level. 
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1. Introduction

Nonlinear science is believed by many outstanding scientists to be the most deeply
important frontier for understanding Nature (Christiansen et al., 2000; Krumhansl, 1991).
The interpenetration of main ideas and methods being used in different fields of science
and technology has become today one of the decisive factors in the progress of science
as a whole. Among the most spectacular examples of such an interchange of ideas and
theoretical methods for analysis of various physical phenomena is the problem of solitary
wave formation in nonautonomous and inhomogeneous dispersive and nonlinear systems.
These models are used in a variety of fields of modern nonlinear science from hydrodynamics
and plasma physics to nonlinear optics and matter waves in Bose-Einstein condensates.
The purpose of this Chapter is to show the progress that is being made in the field of
the exactly integrable nonautonomous and inhomogeneous nonlinear evolution equations
possessing the exact soliton solutions. These kinds of solitons in nonlinear nonautonomous
systems are well known today as nonautonomous solitons. Most of the problems
considered in the present Chapter are motivated by their practical significance, especially the
hydrodynamics applications and studies of possible scenarios of generations and controlling
of monster (rogue) waves by the action of different nonautonomous and inhomogeneous
external conditions.
Zabusky and Kruskal (Zabusky & Kruskal, 1965) introduced for the first time the soliton
concept to characterize nonlinear solitary waves that do not disperse and preserve their
identity during propagation and after a collision. The Greek ending "on" is generally
used to describe elementary particles and this word was introduced to emphasize the most
remarkable feature of these solitary waves. This means that the energy can propagate in the
localized form and that the solitary waves emerge from the interaction completely preserved
in form and speed with only a phase shift. Because of these defining features, the classical
soliton is being considered as the ideal natural data bit. It should be emphasized that today,
the optical soliton in fibers presents a beautiful example in which an abstract mathematical
concept has produced a large impact on the real world of high technologies (Agrawal, 2001;
Akhmediev, 1997; 2008; Dianov et al., 1989; Hasegawa, 1995; 2003; Taylor, 1992).
Solitons arise in any physical system possessing both nonlinearity and dispersion, diffraction
or diffusion (in time or/and space). The classical soliton concept was developed for nonlinear
and dispersive systems that have been autonomous; namely, time has only played the role of

3
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the independent variable and has not appeared explicitly in the nonlinear evolution equation.
A not uncommon situation is one in which a system is subjected to some form of external
time-dependent force. Such situations could include repeated stress testing of a soliton in
nonuniform media with time-dependent density gradients.
Historically, the study of soliton propagation through density gradients began with the
pioneering work of Tappert and Zabusky (Tappert & Zabusky, 1971). As early as in 1976
Chen and Liu (Chen, 1976; 1978) substantially extended the concept of classical solitons to the
accelerated motion of a soliton in a linearly inhomogeneous plasma. It was discovered that for
the nonlinear Schrödinger equation model (NLSE) with a linear external potential, the inverse
scattering transform (IST) method can be generalized by allowing the time-varying eigenvalue
(TVE), and as a consequence of this, the solitons with time-varying velocities (but with time
invariant amplitudes) have been predicted (Chen, 1976; 1978). At the same time Calogero
and Degaspieris (Calogero, 1976; 1982) introduced a general class of soliton solutions for the
nonautonomous Korteweg-de Vries (KdV) models with varying nonlinearity and dispersion.
It was shown that the basic property of solitons, to interact elastically, was also preserved,
but the novel phenomenon was demonstrated, namely the fact that each soliton generally
moves with variable speed as a particle acted by an external force rather than as a free particle
(Calogero, 1976; 1982). In particular, to appreciate the significance of this analogy, Calogero
and Degaspieris introduced the terms boomeron and trappon instead of classical KdV solitons
(Calogero, 1976; 1982). Some analytical approaches for the soliton solutions of the NLSE in
the nonuniform medium were developed by Gupta and Ray (Gupta, 1981), Herrera (Herrera,
1984), and Balakrishnan (Balakrishnan, 1985). More recently, different aspects of soliton
dynamics described by the nonautonomous NLSE models were investigated in (Serkin &
Hasegawa, 2000a;b; 2002; Serkin et al., 2004; 2007; 2001a;b). In these works, the ”ideal”
soliton-like interaction scenarios among solitons have been studied within the generalized
nonautonomous NLSE models with varying dispersion, nonlinearity and dissipation or gain.
One important step was performed recently by Serkin, Hasegawa and Belyaeva in the Lax pair
construction for the nonautonomous nonlinear Schrödinger equation models (Serkin et al.,
2007). Exact soliton solutions for the nonautonomous NLSE models with linear and harmonic
oscillator potentials substantially extend the concept of classical solitons and generalize it
to the plethora of nonautonomous solitons that interact elastically and generally move with
varying amplitudes, speeds and spectra adapted both to the external potentials and to the
dispersion and nonlinearity variations. In particular, solitons in nonautonomous physical
systems exist only under certain conditions and varying in time nonlinearity and dispersion
cannot be chosen independently; they satisfy the exact integrability conditions. The law of
soliton adaptation to an external potential has come as a surprise and this law is being today
the object of much concentrated attention in the field. The interested reader can find many
important results and citations, for example, in the papers published recently by Zhao et al.
(He et al., 2009; Luo et al., 2009; Zhao et al., 2009; 2008), Shin (Shin, 2008) and (Kharif et al.,
2009; Porsezian et al., 2007; Yan, 2010).
How can we determine whether a given nonlinear evolution equation is integrable or not?
The ingenious method to answer this question was discovered by Gardner, Green, Kruskal
and Miura (GGKM) (Gardner et al., 1967). Following this work, Lax (Lax, 1968) formulated
a general principle for associating of nonlinear evolution equations with linear operators,
so that the eigenvalues of the linear operator are integrals of the nonlinear equation. Lax
developed the method of inverse scattering transform (IST) based on an abstract formulation
of evolution equations and certain properties of operators in a Hilbert space, some of which
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are well known in the context of quantum mechanics. Ablowitz, Kaup, Newell, Segur (AKNS)
(Ablowitz et al., 1973) have found that many physically meaningful nonlinear models can be
solved by the IST method.
In the traditional scheme of the IST method, the spectral parameter Λ of the auxiliary
linear problem is assumed to be a time independent constant Λ

′
t = 0, and this fact plays a

fundamental role in the development of analytical theory (Zakharov, 1980). The nonlinear
evolution equations that arise in the approach of variable spectral parameter, Λ

′
t �= 0,

contain, as a rule, some coefficients explicitly dependent on time. The IST method with
variable spectral parameter makes it possible to construct not only the well-known models
for nonlinear autonomous physical systems, but also discover many novel integrable and
physically significant nonlinear nonautonomous equations.
In this work, we clarify our algorithm based on the Lax pair generalization and reveal generic
properties of nonautonomous solitons. We consider the generalized nonautonomous NLSE
and KdV models with varying dispersion and nonlinearity from the point of view of their
exact integrability. It should be stressed that to test the validity of our predictions, the
experimental arrangement should be inspected to be as close as possible to the optimal map
of parameters, at which the problem proves to be exactly integrable (Serkin & Hasegawa,
2000a;b; 2002). Notice, that when Serkin and Hasegawa formulated their concept of
solitons in nonautonomous systems (Serkin & Hasegawa, 2000a;b; 2002), known today as
nonautonomous solitons and SH-theorems (Serkin & Hasegawa, 2000a;b; 2002) published for
the first time in (Serkin & Hasegawa, 2000a;b; 2002), they emphasized that "the methodology
developed provides for a systematic way to find an infinite number of the novel stable
bright and dark “soliton islands” in a “sea of solitary waves” with varying dispersion,
nonlinearity, and gain or absorption" (Belyaeva et al., 2011; Serkin et al., 2010a;b). The
concept of nonautonomous solitons, the generalized Lax pair and generalized AKNS methods
described in details in this Chapter can be applied to different physical systems, from
hydrodynamics and plasma physics to nonlinear optics and matter-waves and offer many
opportunities for further scientific studies. As an illustrative example, we show that important
mathematical analogies between different physical systems open the possibility to study
optical rogue waves and ocean rogue waves in parallel and, due to the evident complexity
of experiments with rogue waves in open oceans, this method offers remarkable possibilities
in studies nonlinear hydrodynamic problems by performing experiments in the nonlinear
optical systems with nonautonomous solitons and optical rogue waves.

2. Lax operator method and exact integrability of nonautonomous nonlinear and
dispersive models with external potentials

The classification of dynamic systems into autonomous and nonautonomous is commonly
used in science to characterize different physical situations in which, respectively, external
time-dependent driving force is being present or absent. The mathematical treatment
of nonautonomous system of equations is much more complicated then of traditional
autonomous ones. As a typical illustration we may mention both a simple pendulum whose
length changes with time and parametrically driven nonlinear Duffing oscillator (Nayfeh &
Balachandran, 2004).
In the framework of the IST method, the nonlinear integrable equation arises as the
compatibility condition of the system of the linear matrix differential equations

ψx = F̂ψ(x, t), ψt = Ĝψ(x, t). (1)
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Here ψ(x, t) = {ψ1, ψ2}T is a 2-component complex function, F̂ and Ĝ are complex-valued
(2 × 2) matrices. Let us consider the general case of the IST method with a time-dependent
spectral parameter Λ(T) and the matrices F̂ and Ĝ

F̂ (Λ; S, T)=F̂
{

Λ(T), q [S(x, t), T] ;
∂q
∂S

(
∂S
∂x

)
;

∂2q
∂S2

(
∂S
∂x

)2
; ...;

∂nq
∂Sn

(
∂S
∂x

)n
}

Ĝ(Λ; S, T)=Ĝ
{

Λ(T), q [S(x, t), T] ;
∂q
∂S

(
∂S
∂x

)
;

∂2q
∂S2

(
∂S
∂x

)2
; ...;

∂nq
∂Sn

(
∂S
∂x

)n
}

,

dependent on the generalized coordinates S = S(x, t) and T(t) = t, where the function
q [S(x, t), T] and its derivatives denote the scattering potentials Q(S, T) and R(S, T) and
their derivatives, correspondingly. The condition for the compatibility of the pair of linear
differential equations (1) takes a form

∂F̂
∂T

+
∂F̂
∂S

St − ∂Ĝ
∂S

Sx +
[
F̂ , Ĝ

]
= 0, (2)

where
F̂ = −iΛ(T)σ̂3 + Û φ̂, (3)

Ĝ =

(
A B
C −A

)
, (4)

σ̂3 is the Pauli spin matrix and matrices Û and φ̂ are given by

Û =
√

σFγ (T)
(

0 Q(S, T)
R(S, T) 0

)
, (5)

φ̂ =

(
exp[−iϕ/2] 0

0 exp[iϕ/2]

)
. (6)

Here F(T) and ϕ(S, T) are real unknown functions, γ is an arbitrary constant, and σ = ±1.
The desired elements of Ĝ matrix (known in the modern literature as the AKNS elements) can
be constructed in the form Ĝ = ∑k=3

k=0 GkΛk,with time varying spectral parameter given by

ΛT = λ0 (T) + λ1 (T)Λ (T) , (7)

where time-dependent functions λ0 (T) and λ1 (T) are the expansion coefficients of ΛT in
powers of the spectral parameter Λ (T) .
Solving the system (2-6), we find both the matrix elements A, B, C

A = −iλ0S/Sx + a0 − 1
4

a3σF2γ(QRϕSSx + iQRSSx − iRQSSx) (8)

+
1
2

a2σF2γQR + Λ
(
−iλ1S/Sx +

1
2

a3σF2γQR + a1

)
+ a2Λ2 + a3Λ3,

B =
√

σFγ exp[iϕS/2]{− i
4

a3S2
x

(
QSS +

i
2

QϕSS − 1
4

Qϕ2
S + iQS ϕS

)
− i

4
a2QϕSSx − 1

2
a2QSSx + iQ

(
−iλ1S/Sx +

1
2

a3σF2γQR + a1

)
+Λ

(
− i

4
a3QϕSSx − 1

2
a3QSSx + ia2Q

)
+ ia3Λ2Q},
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C =
√

σFγ exp[−iϕS/2]{− i
4

a3S2
x

(
RSS − i

2
RϕSS − 1

4
Rϕ2

S − iRS ϕS

)
− i

4
a2RϕSSx +

1
2

a2RSSx + iR
(
−iλ1S/Sx +

1
2

a3σF2γQR + a1

)
+Λ

(
− i

4
a3RϕSSx +

1
2

a3RSSx + ia2R
)
+ ia3Λ2R},

and two general equations

iQT =
1
4

a3QSSSS3
x +

3i
8

a3QSS ϕSS3
x −

3i
4

a3σF2γQ2RϕSSx (9)

−3
2

a3σF2γQRQSSx − i
2

a2QSSS2
x + ia2σF2γQ2R

+iQS

(
−St + λ1S + ia1Sx − i

2
a2 ϕSS2

x +
3
8

a3 ϕSSS3
x +

3i
16

a3 ϕ2
SS3

x

)
+Q

(
iλ1 − iγ

FT
F

+
1
2

a2 ϕSSS2
x −

3
16

a3 ϕS ϕSSS3
x

)
+Q

[
2λ0S/Sx + 2ia0 +

1
2
(ϕT + ϕSSt)− 1

2
λ1SϕS − i

2
a1 ϕSSx

]
+Q

(
i
8

a2 ϕ2
SS2

x −
i

32
a3 ϕ3

SS3
x +

i
8

a3 ϕSSSS3
x

)

iRT =
1
4

a3RSSSS3
x −

3i
8

a3RSS ϕSS3
x +

3i
4

a3σF2γR2QϕSSx (10)

−3
2

a3σF2γR2QSSx +
i
2

a2RSSS2
x − ia2σF2γR2Q

+iRS

(
−St + λ1S + ia1Sx − i

2
a2 ϕSS2

x −
3
8

a3 ϕSSS3
x +

3i
16

a3 ϕ2
SS3

x

)
+R
(

iλ1 − iγ
FT
F

+
1
2

a2 ϕSSS2
x −

3
16

a3 ϕS ϕSSS3
x

)
+R
[
−2λ0S/Sx − 2ia0 − 1

2
(ϕT + ϕSSt) +

1
2

λ1SϕS +
i
2

a1 ϕSSx

]
+R
(
− i

8
a2 ϕ2

SS2
x +

i
32

a3 ϕ3
SS3

x −
i
8

a3 ϕSSSS3
x

)
,

where the arbitrary time-dependent functions a0 (T) , a1 (T) , a2 (T) , a3 (T) have been
introduced within corresponding integrations.
By using the following reduction procedure R = −Q∗, it is easy to find that two equations (9)
and (10) take the same form if the following conditions

a0 = −a∗0, a1 = −a∗1, a2 = −a∗2, a3 = −a∗3, (11)

λ0 = λ∗
0, λ1 = λ∗

1, F = F∗

are fulfilled.
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3. Generalized nonlinear Schrödinger equation and solitary waves in
nonautonomous nonlinear and dispersive systems: nonautonomous solitons

Let us study a special case of the reduction procedure for Eqs. (9,10) when a3 = 0

A = −iλ0S/Sx + a0(T)− 1
2

a2(T)σF2γ |Q|2 − iλ1S/SxΛ + a1(T)Λ + a2(T)Λ2,

B =
√

σFγ exp (iϕ/2)
{
− i

4
a2(T)QϕSSx − 1

2
a2(T)QSSx

}
+

i {Q [−iλ1S/Sx + a1(T) + Λa2(T)]} ,

C =
√

σFγ exp (−iϕ/2)
{

i
4

a2(T)Q∗ϕSSx − 1
2

a2(T)Q∗
SSx

}
−i {Q∗ [−iλ1x + a1(T) + Λa2(T)]} .

In accordance with conditions (11), the imaginary functions a0(T), a1(T), a2(T) can be
defined in the following way: a0(T) = iγ0(T), a1(T) = iV(T), a2(T) = −iD2(T), R2(T) =
F2γD2(T),where D2(T), V(T), γ0(T) are arbitrary real functions. The coefficients D2(T)
and R2(T) are represented by positively defined functions (for σ = −1, γ is assumed as a
semi-entire number).
Then, Eqs. (9,10) can be transformed into

iQT = −1
2

D2QSSS2
x − σR2 |Q|2 Q − iṼQS + iΓQ + UQ, (12)

where
Ṽ(S, T) =

1
2

D2S2
x ϕS + VSx + St − λ1S,

U(S, T) =
1
8

D2S2
x ϕ2

S − 2γ0 +
1
2
(ϕT + ϕSSt + VSx ϕS) + 2λ0S/Sx − 1

2
λ1 ϕSS, (13)

Γ =

(
−γ

FT
F

− 1
4

D2S2
x ϕSS + λ1

)
=

(
1
2

W(R2, D2)

R2D2
− 1

4
D2S2

x ϕSS + λ1

)
. (14)

Eq.(12) can be written down in the independent variables (x, t)

iQt +
1
2

D2(t)Qxx + σR2(t) |Q|2 Q − U(x, t)Q + iṼ′Qx = iΓ(t)Q. (15)

Let us transform Eq.(15) into the more convenient form

iQt +
1
2

D2Qxx + σR2 |Q|2 Q − UQ = iΓQ (16)

using the following condition

Ṽ′ = 1
2

D2Sx ϕS + V − λ1S/Sx = 0. (17)

If we apply the commonly accepted in the IST method (Ablowitz et al., 1973) reduction: V =
−ia1 = 0 , we find a parameter λ1 from (17)

λ1 =
1
2

D2S2
x ϕS/S, (18)
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and the corresponding potential U(S, T) from Eq.(13):

U(S, T) = −2γ0 + 2λ0S/Sx +
1
2
(ϕT + ϕSSt)− 1

8
D2S2

x ϕ2
S. (19)

According to Eq.(14), the gain or absorption coefficient now is represented by

Γ =
1
2

W(R2, D2)

R2D2
− 1

4
D2S2

x ϕSS +
1
2

D2S2
x ϕS/S. (20)

Let us consider some special choices of variables to specify the solutions of (16). First of all,
we assume that variables are factorized in the phase profile ϕ(S, T) as ϕ = C(T)Sα. The first
term in the real potential (19) represents some additional time-dependent phase e2γ0(t)t of the
solution Q(x, t) for the equation (16) and, without loss of the generality, we use γ0 = 0. The
second term in (19) depends linearly on S. The NLSE with the linear spatial potential and
constant λ0, describing the case of Alfen waves propagation in plasmas, has been studied
previously in Ref. (Chen, 1976). We will study the more general case of chirped solitons in the
Section 4 of this Chapter. Now, taking into account three last terms in (19), we obtain

U(S, T) = 2λ0S/Sx +
1
2

CTSα + 1/2αCSα−1St − 1
8

D2C2S2
xα2S2α−2. (21)

The gain or absorption coefficient (20) becomes

Γ(T) =
1
2

W(R2, D2)

R2D2
+

α

4
(3 − α)D2S2

xCSα−2 (22)

and Eq.(18) takes a form

λ1 =
1
2

D2S2
xCαSα−2. (23)

If we assume that the functions Γ(T) and λ1(T) depend only on T and do not depend on S,
we conclude that α = 0 or α = 2.
The study of the soliton solutions of the nonautonomous NLSE with varying coefficients
without time and space phase modulation (chirp) and corresponding to the case of α = 0
has been carried out in Ref. (Serkin & Belyaeva, 2001a;b). Let us find here the solutions of
Eq.(16) with chirp in the case of α = 2, ϕ(S, T) = C(T)S2. In this case, Eq. (18) becomes
λ1 = D2S2

xC. Now, the real spatial-temporal potential (21) takes the form

U [S(x, t), T)] = 2λ0S/Sx +
1
2

(
CT − D2S2

xC2
)

S2 + CSSt

Consider the simplest option to choose the variable S(x, t) when the variables (x, t) are
factorized: S(x, t) = P(t)x. In this case, all main characteristic functions: the phase
modulation

ϕ(x, t) = Θ(t)x2, (24)

the real potential

U(x, t) = 2λ0x +
1
2

(
Θt − D2Θ2

)
x2 ≡ 2λ0(t)x +

1
2

Ω2(t)x2, (25)

the gain (or absorption) coefficient

Γ(t) =
1
2

(
W(R2, D2)

R2D2
+ D2P2C

)
=

1
2

(
W(R2, D2)

R2D2
+ D2Θ

)
(26)
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and the spectral parameter λ1

λ1(t) = D2P2C = D2(t)Θ(t) (27)

are found to be dependent on the self-induced soliton phase shift Θ(t). Notice that the
definition Ω2(t) ≡ Θt − D2Θ2 has been introduced in Eq.(25).
Now we can rewrite the generalized NLSE (16) with time-dependent nonlinearity, dispersion
and gain or absorption in the form of the nonautonomous NLSE with linear and parabolic
potentials

iQt +
1
2

D2(t)Qxx + σR2(t) |Q|2 Q − 2λ0(t)x − 1
2

Ω2(t)x2Q = iΓQ. (28)

4. Hidden features of the soliton adaptation law to external potentials: the
generalized Serkin-Hasegawa theorems

It is now generally accepted that solitary waves in nonautonomous nonlinear and dispersive
systems can propagate in the form of so-called nonautonomous solitons or solitonlike
similaritons (see (Atre et al., 2006; Avelar et al., 2009; Belić et al., 2008; Chen et al., 2007;
Hao, 2008; He et al., 2009; Hernandez et al., 2005; Hernandez-Tenorio et al., 2007; Liu et al.,
2008; Porsezian et al., 2009; 2007; Serkin et al., 2007; Shin, 2008; Tenorio et al., 2005; Wang
et al., 2008; Wu, Li & Zhang, 2008; Wu, Zhang, Li, Finot & Porsezian, 2008; Zhang et al.,
2008; Zhao et al., 2009; 2008) and references therein). Nonautonomous solitons interact
elastically and generally move with varying amplitudes, speeds and spectra adapted both
to the external potentials and to the dispersion and nonlinearity variations. The existence of
specific laws of soliton adaptation to external gain and loss potentials was predicted by Serkin
and Hasegawa in 2000 (Serkin & Hasegawa, 2000a;b; 2002). The physical mechanism resulting
in the soliton stabilization in nonautonomous and dispersive systems was revealed in this
paper. From the physical point of view, the adaptation means that solitons remain self similar
and do not emit dispersive waves both during their interactions with external potentials
and with each other. The soliton adaptation laws are known today as the Serkin-Hasegawa
theorems (SH theorems). Serkin and Hasegawa obtained their SH-theorems by using the
symmetry reduction methods when the initial nonautonomous NLSE can be transformed
by the canonical autonomous NLSE under specific conditions found in (Serkin & Hasegawa,
2000a;b). Later, SH-theorems have been confirmed by different methods, in particular, by the
Painleve analysis and similarity transformations (Serkin & Hasegawa, 2000a;b; 2002; Serkin
et al., 2004; 2007; 2001a;b).
Substituting the phase profile Θ(t) given by Eq. (26) into Eq. (25), it is straightforward to
verify that the frequency of the harmonic potential Ω(t) is related with dispersion D2(t),
nonlinearity R2(t) and gain or absorption coefficient Γ(t) by the following conditions

Ω2(t)D2(t) = D2(t)
d
dt

(
Γ(t)

D2(t)

)
− Γ2(t)

− d
dt

(
W(R2, D2)

R2D2

)
+

(
2Γ(t) +

d
dt

ln R2(t)
)

W(R2, D2)

R2D2
(29)

= D2(t)
d
dt

(
Γ(t)

D2(t)

)
− Γ2(t) +

(
2Γ(t) +

d
dt

ln R2(t)
)

d
dt

ln
D2(t)
R2(t)

− d2

dt2 ln
D2(t)
R2(t)

,

where W(R2, D) = R2D
′
2t − D2R

′
2t is the Wronskian.
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After the substitutions

Q(x, t) = q(x, t) exp
[∫ t

0
Γ(τ)dτ

]
, R(t) = R2(t) exp

[
2
∫ t

0
Γ(τ)dτ

]
, D(t) = D2(t),

Eq. (28) is transformed to the generalized NLSE without gain or loss term

i
∂q
∂t

+
1
2

D(t)
∂2q
∂x2 +

[
σR(t) |q|2 − 2λ0(t)x − 1

2
Ω2(t)x2

]
q = 0. (30)

Finally, the Lax equation (2) with matrices (3-6) provides the nonautonomous model (30)
under condition that dispersion D(t), nonlinearity R(t), and the harmonic potential satisfy
to the following exact integrability conditions

Ω2(t)D(t) =
W(R, D)

RD
d
dt

ln R(t)− d
dt

(
W(R, D)

RD

)
=

d
dt

ln D(t)
d
dt

ln R(t)− d2

dt2 ln D(t)− R(t)
d2

dt2
1

R(t)
. (31)

The self-induced soliton phase shift is given by

Θ(t) = −W [(R(t), D(t)]
D2(t)R(t)

(32)

and the time-dependent spectral parameter is represented by

Λ(t) = κ(t) + iη(t) =
D0R(t)
R0D(t)

⎡⎣Λ(0) +
R0
D0

t∫
0

λ0(τ)D(τ)

R(τ)
dτ

⎤⎦ , (33)

where the main parameters: time invariant eigenvalue Λ(0) = κ0 + iη0; D0 = D(0); R0 =
R(0) are defined by the initial conditions.
We call Eq. (31) as the law of the soliton adaptation to the external potentials. The basic
property of classical solitons to interact elastically holds true, but the novel feature of the
nonautonomous solitons arises. Namely, both amplitudes and speeds of the solitons, and
consequently, their spectra, during the propagation and after the interaction are no longer
the same as those prior to the interaction. All nonautonomous solitons generally move with
varying amplitudes η(t) and speeds κ(t) adapted both to the external potentials and to the
dispersion D(t) and nonlinearity R(t) changes.
Having obtained the eigenvalue equations for scattering potential, we can write down the
general solutions for bright (σ = +1) and dark (σ = −1) nonautonomous solitons applying
the auto-Bäcklund transformation (Chen, 1974) and the recurrent relation

qn(x, t) = −qn−1(x, t)− 4ηnΓ̃n−1(x, t)

1 +
∣∣∣Γ̃n−1(x, t)

∣∣∣2 ×
√

D(t)
R(t)

exp[−iΘx2/2], (34)

which connects the (n− 1) and n - soliton solutions by means of the so-called pseudo-potential
Γ̃n−1(x, t) = ψ1(x, t)/ψ2(x, t) for the (n − 1)−soliton scattering functions ψ(x, t) = (ψ1ψ2)

T .
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Bright q+1 (x, t) and dark q−1 (x, t) soliton solutions are represented by the following analytic
expressions:

q+1 (x, t | σ = +1) = 2η1(t)

√
D(t)
R(t)

sech [ξ1(x, t)]× exp
{
−i
(

Θ(t)
2

x2 + χ1(x, t)
)}

; (35)

q−1 (x, t | σ = −1) = 2η1(t)

√
D(t)
R(t)

[√
(1 − a2) + ia tanh ζ (x, t)

]
(36)

× exp
{
−i
(

Θ(t)
2

x2 + φ(x, t)
)}

,

ζ(x, t) = 2aη1(t)x + 4a
t∫

0

D(τ)η1(τ)κ1(τ)dτ, (37)

φ(x, t) = 2
[

κ1(t)− η1(t)
√
(1 − a2)

]
x

+2
t∫

0

D(τ)

[
κ2

1 + η2
1

(
3 − a2

)
− 2κ1η1

√
(1 − a2)

]
dτ. (38)

Dark soliton (36) has an additional parameter, 0 ≤ a ≤ 1, which designates the depth of
modulation (the blackness of gray soliton) and its velocity against the background. When
a = 1, dark soliton becomes black. For optical applications, Eq.(36) can be easily transformed
into the Hasegawa and Tappert form for the nonautonomous dark solitons (Hasegawa, 1995)
under the condition κ0 = η0

√
(1 − a2) that corresponds to the special choice of the retarded

frame associated with the group velocity of the soliton

q−1 (x, t | σ = −1) = 2η1(t)

√
D(t)
R(t)

[√
(1 − a2) + ia tanh ζ̃ (x, t)

]

× exp
{
−i
(

Θ(t)
2

x2 + φ̃(x, t)
)}

,

ζ̃(x, t) = 2aη1(t)x + 4a
t∫

0

D(τ)η1(τ)

[
η1(τ)

√
(1 − a2) + K(τ)

]
dτ,

φ̃(x, t) = 2K(t)x + 2
t∫

0

D(τ)
[
K2(τ) + 2η2

1(τ)
]

dτ,

K(t) =
R(t)
D(t)

t∫
0

λ0(τ)
D(τ)

R(τ)
dτ.

Notice that the solutions considered here hold only when the nonlinearity, dispersion and
confining harmonic potential are related by Eq. (31), and both D(t) �= 0 and R(t) �= 0 for all
times by definition.
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Two-soliton q2(x, t) solution for σ = +1 follows from Eq. (34)

q2(x, t) = 4

√
D(t)
R(t)

N (x, t)
D (x, t)

exp
[
− i

2
Θ(t)x2

]
, (39)

where the numerator N (x, t) is given by

N = cosh ξ2 exp (−iχ1)

×[(κ2 − κ1)
2 + 2iη2(κ2 − κ1) tanh ξ2 + η2

1 − η2
2 ] + η2 cosh ξ1 exp (−iχ2)

×[(κ2 − κ1)
2 − 2iη1(κ2 − κ1) tanh ξ1 − η2

1 + η2
2 ], (40)

and the denominator D (x, t) is represented by

D = cosh(ξ1 + ξ2)
[
(κ2 − κ1)

2 + (η2 − η1)
2
]

+ cosh(ξ1 − ξ2)
[
(κ2 − κ1)

2 + (η2 + η1)
2
]
− 4η1η2 cos (χ2 − χ1) . (41)

Arguments and phases in Eqs.(39-41)

ξi(x, t) = 2ηi(t)x + 4
t∫

0

D(τ)ηi(τ)κi(τ)dτ, (42)

χi(x, t) = 2κi(t)x + 2
t∫

0

D(τ)
[
κ2

i (τ)− η2
i (τ)

]
dτ (43)

are related with the amplitudes

ηi(t) =
D0R(t)
R0D(t)

η0i, (44)

and velocities

κi(t) =
D0R(t)
R0D(t)

⎡⎣κ0i +
R0
D0

t∫
0

λ0(τ)D(τ)

R(τ)
dτ

⎤⎦ (45)

of the nonautonomous solitons, where κ0i and η0i correspond to the initial velocity and
amplitude of the i -th soliton (i = 1, 2).
Eqs. (39-45) describe the dynamics of two bounded solitons at all times and all locations.
Obviously, these soliton solutions reduce to classical soliton solutions in the limit of
autonomous nonlinear and dispersive systems given by conditions: R(t) = D(t) = 1, and
λ0(t) = Ω(t) ≡ 0 for canonical NLSE without external potentials.
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5. Chirped optical solitons with moving spectra in nonautonomous systems:
colored nonautonomous solitons

Both the nonlinear Schrödinger equations (28, 30) and the Lax pair equations (3–6) are written
down here in the most general form. The transition to the problems of optical solitons is
accomplished by the substitution x → T (or x → X); t → Z and q+(x, t) → ũ+(Z, T( or X))
for bright solitons, and

[
q−(x, t)

]∗ → ũ−(Z, T( or X)) for dark solitons, where the asterisk
denotes the complex conjugate, Z is the normalized distance, and T is the retarded time for
temporal solitons, while X is the transverse coordinate for spatial solitons.
The important special case of Eq.(30) arises under the condition Ω2(Z) = 0. Let us rewrite
Eq. (30) by using the reduction Ω = 0, which denotes that the confining harmonic potential is
vanishing

i
∂u
∂Z

+
σ

2
D(Z)

∂2u
∂T2 + R(Z) |u|2 u − 2σλ0(Z)Tu = 0. (46)

This implies that the self-induced soliton phase shift Θ(Z), dispersion D(Z), and nonlinearity
R(Z) are related by the following law of soliton adaptation to external linear potential

D(Z)/D0 = R(Z)/R0 exp

⎧⎨⎩−Θ0D0
R0

Z∫
0

R(τ)dτ

⎫⎬⎭ . (47)

Nonautonomous exactly integrable NLSE model given by Eqs. (46,47) can be considered as
the generalization of the well-studied Chen and Liu model (Chen, 1976) with linear potential
λ0(Z) ≡ α0 = const and D(Z) = D0 = R(Z) = R0 = 1, σ = +1, Θ0 = 0. It is interesting to
note that the accelerated solitons predicted by Chen and Liu in plasma have been discovered
in nonlinear fiber optics only decade later (Agrawal, 2001; Dianov et al., 1989; Taylor, 1992).
Notice that nonautonomous solitons with nontrivial self-induced phase shifts and varying
amplitudes, speeds and spectra for Eq. (46) are given in quadratures by Eqs. (35-45) under
condition Ω2(Z) = 0.
Let us show that the so-called Raman colored optical solitons can be approximated by this
equation. Self-induced Raman effect (also called as soliton self-frequency shift) is being
described by an additional term in the NLSE: −σRU∂ | U |2 /∂T, where σR originates from the
frequency dependent Raman gain (Agrawal, 2001; Dianov et al., 1989; Taylor, 1992). Assuming
that soliton amplitude does not vary significantly during self-scattering | U |2= η2sech2(ηT),
we obtain that

σR
∂ | U |2

∂T
≈ −2σRη4T = 2α0T

and dv/dZ = σRη4/2, where v = κ/2. The result of soliton perturbation theory (Agrawal,
2001; Dianov et al., 1989; Taylor, 1992) gives dv/dZ = 8σRη4/15. This fact explains the
remarkable stability of colored Raman solitons that is guaranteed by the property of the exact
integrability of the Chen and Liu model (Chen, 1976). More general model Eq. (46) and its
exact soliton solutions open the possibility of designing an effective soliton compressor, for
example, by drawing a fiber with R(Z) = 1 and D(Z) = exp(−c0Z),where c0 = Θ0D0.
It seems very attractive to use the results of nonautonomous solitons concept in ultrashort
photonic applications and soliton lasers design.
Another interesting feature of the novel solitons, which we called colored nonautonomous
solitons, is associated with the nontrivial dynamics of their spectra. Frequency spectrum of
the chirped nonautonomous optical soliton moves in the frequency domain. In particular,
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if dispersion and nonlinearity evolve in unison D(t) = R(t) or D = R = 1, the solitons
propagate with identical spectra, but with totally different time-space behavior.
Consider in more details the case when the nonlinearity R = R0 stays constant but the
dispersion varies exponentially along the propagation distance

D(Z) = D0 exp (−c0Z) ,

Θ(Z) = Θ0 exp (c0Z) .

Let us write the one and two soliton solutions in this case with the lineal potential that, for
simplicity, does not depend on time: λ0(Z) = α0 = const

U1(Z, T) = 2η01

√
D0 exp (c0Z)sech [ξ1(Z, T)]× exp

[
− i

2
Θ0 exp (c0Z) T2 − iχ1(Z, T)

]
, (48)

U2(Z, T) = 4
√

D0 exp (−c0Z)
N(Z, T)
D(Z, T)

exp
[
− i

2
Θ0 exp (c0Z) T2

]
, (49)

where the nominator N(Z, T) and denominator D(Z, T) are given by Eqs. (40,41) and

ξi(Z, T) = 2η0iT exp (c0Z) + 4D0η0i

×
{

κ0i
c0

[exp (c0Z)− 1] +
α0
c0

[
exp (c0Z)− 1

c0
− Z
]}

, (50)

χi(Z, T) = 2κ0iT exp (c0Z) + 2D0

(
κ2

0i − η2
0i

) exp (2c0Z)− 1
2c0

+2T
α0
c0

[exp (c0Z)− 1] + 4D0κ0i
α0
c0

[
exp (c0Z)− 1

c0
− t
]

+2D0

(
α0
c0

)2 [ exp (c0Z)− exp (−c0Z)
c0

− 2Z
]

. (51)

The initial velocity and amplitude of the i -th soliton (i = 1, 2) are denoted by κ0i and η0i.
We display in Fig.1(a,b) the main features of nonautonomous colored solitons to show not
only their acceleration and reflection from the lineal potential, but also their compression and
amplitude amplification. Dark soliton propagation and dynamics are presented in Fig.1(c,d).
The limit case of the Eqs.(48-51) appears when c0 → ∞ (that means D(Z) = D0 =constant)
and corresponds to the Chen and Liu model (Chen, 1976). The solitons with argument and
phase

ξ(Z, T) = 2η0

(
T + 2κ0Z + α0Z2 − T0

)
,

χ(Z, T) = 2κ0T + 2α0TZ + 2
(

κ2
0 − η2

0

)
Z + 2κ0α0Z2 +

2
3

α2
0Z3

represents the particle-like solutions which may be accelerated and reflected from the lineal
potential.

63Nonautonomous Solitons: Applications from Nonlinear Optics to BEC and Hydrodynamics



14 Will-be-set-by-IN-TECH

Fig. 1. Evolution of nonautonomous bright (a,b) optical soliton calculated within the
framework of the generalized model given by Eqs. (46-51) after choosing the soliton
management parameters c0=0.05, α0 = –0.2, η10 = 0.5, κ10 = 1.5. (a) the temporal behavior;
(b) the corresponding contour map. (c,d) Dark nonautonomous soliton dynamics within the
framework of the model Eqs. (46,47) after choosing the soliton management parameters: (c)
R=–D=1.0 and α0 = −1.0 and (d) R=–D=cos( ωZ), where ω = 3.0.

6. Bound states of colored nonautonomous optical solitons: nonautonomous
"agitated" breathers.

Let us now give the explicit formula of the soliton solutions (48,49) for the case where all
eigenvalues are pure imaginary, or the initial velocities of the solitons are equal to zero. In the
case N = 1 and λ0(Z) = 0 , we obtain

U1(Z, T) = 2η01

√
D0 exp (c0Z)sech [2η01T exp (c0Z))]

× exp
[
− i

2
Θ0 exp (c0Z) T2 + i2D0η2

01
exp (2c0Z)− 1

2c0

]
. (52)

This result shows that the laws of soliton adaptation to the external potentials (31) allow
to stabilize the soliton even without a trapping potential. In addition, Eq.(52) indicates the
possibility for the optimal compression of solitons, which is shown in Fig.2. We stress that
direct computer experiment confirms the exponential in time soliton compression scenario in
full accordance with analytical expression Eq.(52).
The bound two-soliton solution for the case of the pure imaginary eigenvalues is represented
by

U2(Z, T) = 4
√

D0 exp (−c0Z)
N (Z, T)
D (Z, T)

exp
[
− i

2
Θ0 exp (c0Z) T2

]
, (53)

where

N =
(

η2
01 − η2

02

)
exp (c0Z) [η01 cosh ξ2 exp (−iχ1)− η02 cosh ξ1 exp (−iχ2)] , (54)

D = cosh(ξ1 + ξ2) (η01 − η02)
2 + cosh(ξ1 − ξ2) (η01 + η02)

2 − 4η01η02 cos (χ2 − χ1) , (55)
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Fig. 2. Self-compression of nonautonomous soliton calculated within the framework of the
model Eq. (46) after choosing the soliton management parameters c0 = 0.05; α = 0 and
η0 = 0.5. (a) the temporal behavior; (b) the corresponding contour map.

and
ξi(Z, T) = 2η0iT exp (c0Z) , (56)

χi(Z, T) = −2D0η2
0i

exp (2c0Z)− 1
2c0

+ χi0. (57)

For the particular case of η10 = 1/2, η20 = 3/2 Eqs.(53-57) are transformed to

U2(Z, T) = 4
√

D0 exp (−c0Z) exp
[
− i

2
Θ0 exp (c0Z) T2

]
(58)

× exp
[

i
4c0

D0 [exp (2c0Z)− 1] + χ10

]
× cosh 3X − 3 cosh X exp {i2D0 [exp (2c0Z)− 1] /c0 + iΔϕ}

cosh 4X + 4 cosh 2X − 3 cos {2D0 [exp (2c0Z)− 1] /c0 + Δϕ} ,

where X = T exp(c0Z), Δϕ = χ20 − χ10.
In the D(Z) = D0 = 1, c0 = 0 limit, this solution is reduced to the well-known breather
solution, which was found by Satsuma and Yajima (Satsuma & Yajima, 1974) and was called
as the Satsuma-Yajima breather:

U2(Z, T) = 4
cosh 3T + 3 cosh T exp (4iZ)

cosh 4T + 4 cosh 2T + 3 cos 4Z
exp
(

iZ
2

)
.

At Z = 0 it takes the simple form U(Z, T) = 2sech(T). An interesting property of this solution
is that its form oscillates with the so-called soliton period Tsol = π/2.
In more general case of the varying dispersion, D(Z) = D0 exp (−c0Z) , shown in Fig.3 (c0 =
0.25, η10 = 0.25, η20 = 0.75), the soliton period, according to Eq.(58), depends on time.
The Satsuma and Yajima breather solution can be obtained from the general solution if and
only if the soliton phases are chosen properly, precisely when Δϕ = π. The intensity profiles
of the wave build up a complex landscape of peaks and valleys and reach their peaks at the
points of the maximum. Decreasing group velocity dispersion (or increasing nonlinearity)
stimulates the Satsuma-Yajima breather to accelerate its period of "breathing" and to increase
its peak amplitudes of "breathing", that is why we call this effect as "agitated breather" in
nonautonomous system.

65Nonautonomous Solitons: Applications from Nonlinear Optics to BEC and Hydrodynamics



16 Will-be-set-by-IN-TECH

Fig. 3. Nonautonomous "agitated" breather (58) calculated within the framework of the
model (46) after choosing the soliton management parameters c0 = 0.25, η10 = 0.5, η20 = 1.5.
(a) the temporal behavior; (b) the corresponding contour map.

7. Rogue waves, "quantized" modulation instability, and dynamics of
nonautonomous Peregrine solitons under "hyperbolic hurricane wind"

Recently, a method of producing optical rogue waves, which are a physical counterpart to the
rogue (monster) waves in oceans, have been developed (Solli et al., 2007). Optical rogue waves
have been formed in the so-called soliton supercontinuum generation, a nonlinear optical
process in which broadband "colored" solitons are generated from a narrowband optical
background due to induced modulation instability and soliton fission effects (Dudley, 2009;
Dudley et al., 2006; 2008).
Ordinary, the study of rogue waves has been focused on hydrodynamic applications and
experiments (Clamond et al., 2006; Kharif & Pelinovsky, 2003). Nonlinear phenomena in
optical fibers also support rogue waves that are considered as soliton supercontinuum noise. It
should be noticed that because optical rogue waves are closely related to oceanic rogue waves,
the study of their properties opens novel possibilities to predict the dynamics of oceanic
rogue waves. By using the mathematical equivalence between the propagation of nonlinear
waves on water and the evolution of intense light pulses in optical fibers, an international
research team (Kibler et al., 2010) recently reported the first observation of the so-called
Peregrine soliton (Peregrine, 1983). Similar to giant nonlinear water waves, the Peregrine
soliton solutions of the NLSE experience extremely rapid growth followed by just as rapid
decay (Peregrine, 1983). Now, the Peregrine soliton is considered as a prototype of the famous
ocean monster (rogue) waves responsible for many maritime catastrophes.
In this Section, the main attention will be focused on the possibilities of generation and
amplification of nonautonomous Peregrine solitons. This study is an especially important
for understanding how high intensity rogue waves may form in the very noisy and imperfect
environment of the open ocean.
First of all, let us summarize the main features of the phenomenon known as the induced
modulation instability. In 1984, Akira Hasegawa discovered that modulation instability of
continuous (cw) wave optical signal in a glass fiber combined with an externally applied
amplitude modulation can be utilized to produce a train of optical solitons (Hasegawa,
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Fig. 4. Illustrative example of the temporal-spatial dynamics of the induced modulation
instability and the Fermi-Pasta-Ulam recurrence effect calculated in the framework of the
canonical NLSE model : (a) the intensity distribution; (b) the corresponding contour map.

1984). In the sense that the external modulation induces the modulation instability, Hasegawa
called the total process as the induced modulation instability. To demonstrate the induced
modulation instability (IMI), following Hasegawa, we solved the NLSE numerically with
different depths and wavelength of modulation of cw wave. The main features of the induced
modulation instability are presented in Fig.4. In Figure 4, following Hasegawa (Hasegawa,
1984), we present the total scenario of IMI and the restoration of the initial signal due to the
Fermi-Pasta-Ulama recurrence effect. In our computer experiments, we have found novel and
interesting feature of the IMI. Varying the depth of modulation and the level of continuous
wave, we have discovered the effect which we called a "quantized" IMI. Figure 5 shows typical
results of the computation. As can be clearly seen, the high-intensity IMI peaks are formed
and split periodically into two, three, four, and more high-intensity peaks. In Fig.5 we present
this splitting ("quantization") effect of the initially sinus like modulated cw signal into two
and five high-intensity and "long-lived" components.
The Peregrine soliton can be considered as the utmost stage of the induced modulation
instability, and its computer simulation is presented in Fig.6 When we compare the
high-energy peaks of the IMI generated upon a distorted background (see Figs.4, 5) with exact
form of the Peregrine soliton shown in Fig.7(a) we can understand, how such extreme wave
structures may appear as they emerge suddenly on an irregular surface such as the open
ocean.
There are two basic questions to be answered. What happens if arbitrary modulated cw
wave is subjected to some form of external force? Such situations could include effects of
wind, propagation of waves in nonuniform media with time dependent density gradients
and slowly varying depth, nonlinearity and dispersion. For example, in Fig.7(b), we show
the possibility of amplification of the Peregrine soliton when effects of wind are simulated by
additional gain term in the canonical NLSE. The general questions naturally arise: To what
extent the Peregrine soliton can be amplified under effects of wind, density gradients and
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Fig. 5. Illustrative example of the "quantized" induced modulation instability: (a) the
temporal-spatial behavior; (b) the corresponding contour map.

slowly varying depth, nonlinearity and dispersion? To answer these questions, let us consider
the dynamics of the Peregrine soliton in the framework of the nonautonomous NLSE model.
In the previous chapters, the auto -Bäcklund transformation has been used to find soliton
solutions of the nonautonomous NLSE model. Now, we consider another remarkable method
to study nonautonomous solitons. The following transformation

q(x, t) = A(t)u(X, T) exp [iφ(X, T)] (59)

has been used by Serkin and Hasegawa in (Serkin & Hasegawa, 2000a;b; 2002) to reduce the
nonautonomous NLSE with varying dispersion, nonlinearity and gain or loss to the "ideal"
NLSE

i
∂u
∂T

+
σ

2
∂2u
∂X2 + |u|2 u = 0,

where the following notations may be introduced

A(t) =
√

P(t); X = P(t)x; T(t) =
t∫

0

D(τ)P2(τ)dτ; (60)

φ(X, T) =
1
2

W(R, D)

R3 X2 − ϕ (X, T) , (61)

where ϕ (X, T) is the phase of the canonical soliton.
It is easy to see that by using Eq.(59-61), the one-soliton solution may be written in the
following form

q+1 (x, t | σ = +1) = 2η̃0 A(t)sech [2η̃0X + 4η̃0κ̃0T(t)]
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Fig. 6. Illustrative examples of the Peregrine soliton dynamics: (a) - classical Peregrine soliton
calculated in the framework of the canonical NLSE model; (b) its behavior under linear
amplification associated with continuous wind.

× exp
{

i
[

1
2

W(R, D)

R3 X2 − 2κ̃0X − 2(κ̃0
2 − η̃0

2)T(t)
]}

,

η̃0 =
D0
R0

η0; κ̃0 =
D0
R0

κ0; P(t) = R(t)/D(t). (62)

The transformation (59) can be applied to obtain all solutions of the nonautonomous NLSE
(30) and, in particular, the nonautonomous rational solutions known as the Peregrine solitons.
Thus, the Peregrine soliton (Peregrine, 1983) can be discovered for the nonautonomous NLSE
model as well

qP(x, t) = A(t)r(X, T) exp [iφ(T)] (63)

where

r(X, T) = 1 − 4(1 + 2iT)
1 + 4T2 + 4X2 , (64)

φ(X, T) =
1
2

W(R, D)

R3 X2 + T(t) (65)

Figure 7 shows spatiotemporal behavior of the nonautonomous Peregrine soliton. The
nonautonomous Peregrine soliton (63-65) shown in Fig.7(b) has been calculated in the
framework of the nonautonomous NLSE model (28) after choosing the parameters λ0 = Ω =
0, D2 = R2 = 1 and the gain coefficient Γ(t) = Γ0/(1− Γ0t). Somewhat surprisingly, however,
this figure indicates a sharp compression and strong amplification of the nonautonomous
Peregrine soliton under the action of hyperbolic gain which, in particular, in the open ocean
can be associated with "hyperbolic hurricane wind".
It should be stressed that since the nonautonomous NLSE model is applied in many other
physical systems such as plasmas and Bose-Einstein condensates (BEC), the results obtained
in this Section can stimulate new research directions in many novel fields (see, for example,
(Bludov et al., 2009; Yan, 2010)).
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Fig. 7. (a) Autonomous and (b) nonautonomous Peregrine solitons calculated within the
framework of the model (63-65) after choosing the soliton management parameters Γ0 = 0.33.

8. Nonautonomous KdV solitons

Notice, that the nonlinear evolution equations that arise in the approach of variable spectral
parameter contain, as a rule, an explicit dependence on the coordinates. Our general approach
makes it possible to construct not only the well-known equations, but also a number of new
integrable equations (NLSE, KdV, modified KdV, Hirota and Satsuma and so on) by extending
the Zakharov–Shabat (ZS) and AKNS formalism. In particular, Eqs.(9,10) under the conditions
(11) with a2=0, a3=−4iD3 and R=1 become

QT = −D3QSSSS3
x − 6iD3QSS ϕSS3

x + 3iD3σF2γQ2 ϕSSx + 6D3σF2γQQSSx (66)

+QS

(
−St + λ1S − V1Sx − 6iD3 ϕSSS3

x +
3
4

D3 ϕ2
SS3

x

)

−iQ
[

2λ0S/Sx − 2γ +
1
2
(ϕT + ϕSSt)− 1

2
λ1SϕS +

1
2

VϕSSx

]

+Q
(

λ1 − γ
FT
F

+
3
4

D3 ϕS ϕSSS3
x

)
− iQ

(
−1

8
D3 ϕ3

SS3
x +

1
2

D3 ϕSSSS3
x

)
,

Eq.(66) can be rewritten in the independent variables (x, t)

Qt = −D3Qxxx − 6iD3Qxx ϕx + 3iD3σF2γQ2 ϕx + 6D3σF2γQQx (67)

+Qx

(
λ1S/Sx − V1 − 6iD3 ϕxx +

3
4

D3 ϕ2
x

)
−iQ

[
2λ0S/Sx − 2γ +

1
2
(ϕT + ϕSSt)− 1

2
λ1Sϕx/Sx +

1
2

Vϕx

]
+Q

(
λ1 − γ

Ft
F
+

3
4

D3 ϕx ϕxx

)
− iQ

(
−1

8
D3 ϕ3

x +
1
2

D3 ϕxxx

)
.
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Fig. 8. Nonautonomous KdV solitons calculated within the framework of the model (71) after
choosing the soliton management parameters α = 0.15, η10 = 0.40, η20 = 0.75. On the left
hand side the temporal behavior is presented, while the corresponding contour map is
presented on the right hand side.

Let us consider the simplest option to choose the real solution Q(x, t), which leads to the only
possibility of ϕ = λ1 = 0. In this case, Eq.(67) is reduced to the KdV with variable coefficients

Qt − 6σR3(t)QQx + D3(t)Qxxx +
1
2

W(D3, R3)

D3R3
= 0, (68)

where the notation R3(t) = F2γD3(t) has been introduced. It is easy to verify that Eq.(68) can
be mapped into the standard KdV under the transformations

Q(x, t) =
D3(T)
R3(T)

q(x, T),

where T =
t∫

0
D3(τ)dτ so that q(x, T) is given by the canonical KdV:

qt − 6σqqx + qxxx = 0.

Applying the auto-Backlund transformation, we can write down the two-soliton solution of
the nonautonomous KdV

Q2(x, t) = −2σ(β1 − β2)
D3(T)
R3(T)

N1
D1

, (69)

where
N1 = β1 (sinh ξ2)

2 + β2 (cosh ξ1)
2 , (70)

D1 =
[√

2β1 sinh ξ1 sinh ξ2 −
√

2β2 cosh ξ1 cosh ξ2

]2
,

ξi =
√

βi/2 (x − 2βiT) , βi = 2η2
0i, i = 1, 2;

and η02 > η01 are initial amplitudes of the solitons.
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Fig. 9. Nonautonomous KdV solitons calculated within the framework of the model (72) after
choosing the soliton management parameters α = 2.0, β = −0.25, η10 = 0.40, η20 = 0.75.

As two illustrative examples, in Fig.8, we present the behavior of nonautonomous KdV soliton
in the framework of the model

Qt − 6σQQx + exp(αt)Qxxx − 1
2

αQ = 0 (71)

with lineal gain (or loss) accompanying by exponential variation of the dispersion coefficient;
and in Fig.9 we show the dynamics of the KdV soliton in the nonautonomous system
described by the model

Qt − 6σQQx + [1 + β cos(αt)] /(1 + β)Qxxx +
αβ sin(αt)

2 [1 + β cos(αt)] (1 + β)
Q = 0 (72)

where D3(t) = [1 + β cos(αt)] /(1 + β), R3(t) = 1.
It is important to compare our exactly integrable nonautonomous KdV model with the model
proposed by Johnson to describe the KdV soliton dynamics under the influence of the depth
variation (Johnson, 1997) and given by

uX − 6σD(X)−3/2uuξ +D(X)1/2uξξξ +
1
2
DX
D u = 0. (73)

We stress that after choosing the parameters R3(t) = D(t)−3/2 and D3(t) = D(t)1/2, the
potential in Eq.(68) becomes W(D3,R3)

D3R3
= −2D′/D, which is very nearly similar to the potential

in Eq.(73) calculated by Johnson (Johnson, 1997).

9. Conclusions

The solution technique based on the generalized Lax pair operator method opens the
possibility to study in details the nonlinear dynamics of solitons in nonautonomous nonlinear
and dispersive physical systems. We have focused on the situation in which the generalized
nonautonomous NLSE model was found to be exactly integrable from the point of view of
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the inverse scattering transform method. We have derived the laws of a soliton adaptation
to the external potential. It is precisely this soliton adaptation mechanism which was of
prime physical interest in our Chapter. We clarified some examples in order to gain a
better understanding into this physical mechanism which can be considered as the interplay
between nontrivial time-dependent parabolic soliton phase and external time-dependent
potential. We stress that this nontrivial time-space dependent phase profile of nonautonomous
soliton depends on the Wronskian of nonlinearity R(t) and dispersion D(t) and this profile
does not exist for canonical NLSE soliton when R(t) = D(t) = 1.
Several novel analytical solutions for water waves have been presented. In particular,
we have found novel solutions for the generalized Peregrine solitons in inhomogeneous
and nonautonomous systems, "quantized" modulation instability, and the exactly integrable
model for the Peregrine solitons under "hyperbolic hurricane wind". It was shown that
important mathematical analogies between optical rogue waves and the Peregrine solitons
in water open the possibility to study optical rogue waves and water rogue waves in parallel
and, due to the evident complexity of experiments with rogue waves in oceans, this method
offers remarkable possibilities in studies nonlinear hydrodynamics problems by performing
experiments in the nonlinear optical systems.
We would like to conclude by saying that the concept of adaptation is of primary importance
in nature and nonautonomous solitons that interact elastically and generally move with
varying amplitudes, speeds, and spectra adapted both to the external potentials and to the
dispersion and nonlinearity changes can be fundamental objects of nonlinear science.
This investigation is a natural follow up of the works performed in collaboration with
Professor Akira Hasegawa and the authors would like to thank him for this collaboration.
We thank BUAP and CONACyT, Mexico for support.
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1. Introduction 
The quasi-stationary Stokes approximation (Frenkel, 1945; Happel & Brenner, 1965) is 
used to describe viscous flows with small Reynolds numbers. Two-dimensional Stokes 
flow with free boundary attracted the attention of many researches. In particular, an 
analogy is drawn (Ionesku, 1965) between the equations of the theory of elasticity 
(Muskeleshvili, 1966) and the equations of hydrodynamics in the Stokes approximation. 
This idea allowed (Antanovskii, 1988) to study the relaxation of a simply connected 
cylinder under the effect of capillary forces. Hopper (1984) proposed to describe the 
dynamics of the free boundary through a family of conformal mappings. This approach 
was later used in (Jeong & Moffatt, 1992; Tanveer & Vasconcelos, 1994) for analysis of 
free-surface cusps and bubble breakup.  
We have developed a method of flow calculation, which is based on the expansion of 
pressure in a complete system of harmonic functions. The structure of this system depends 
on the topology of the region. Using the pressure distribution, we calculate the velocity on 
the boundary and investigate the motion of the boundary. In case of capillary forces the 
pressure is the projection of a generalized function with the carrier on the boundary on the 
subspace of harmonic functions (Chivilikhin, 1992). 
We show that in the 2D case there exists a non-trivial variation of pressure and velocity 
which keeps the Reynolds stress tensor unchanged. The correspondent variations of 
pressure give us the basis for pressure presentation in form of a series. Using this fact and 
the variation formulation of the Stokes problem we obtain a system of equations for the 
coefficients of this series. The variations of velocity give us the basis for the vortical part of 
velocity presentation in the form of a serial expansion with the same coefficients as for the 
pressure series. 
We obtain the potential part of velocity on the boundary directly from the boundary 
conditions - known external stress applied to the boundary. After calculating velocity on the 
boundary with given shape we calculate the boundary deformation during a small time 
step.  
Based on this theory we have developed a method for calculation of the planar Stokes flows 
driven by arbitrary surface forces and potential volume forces. We can apply this method 
for investigating boundary deformation due to capillary forces, external pressure, 
centrifugal forces, etc.  
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Taking into account the capillary forces and external pressure, the strict limitations for 
motion of the free boundary are obtained. In particular, the lifetime of the configurations 
with given number of bubbles was predicted. 

2. General equations 
2.1 The quasi-stationary Stokes approximation 
The equations of viscous fluid motion in the quasi-stationary Stokes approximation due to 
arbitrary surface force f and the continuity equation in the region 2G R  with boundary 
  have the form  

 0
p

x








, (1) 

 0
v

x








, (2) 

where 
vv

p p
x x


 

 
 

 
       

 is the Newtonian stress tensor; v  are the components 

of the velocity; p  is the pressure;   is the coefficient of the dynamical viscosity, which is 
assumed to be constant. The indices ,   take the values 1, 2.  Summation over repeated 
indices is expected. The boundary conditions have the form 

 ,p n f    x  (3) 

where n  and f  are the components of the vector of outer normal to the boundary and the 
surface force. Let 0 be the outer boundary of the region; ( 1,2,..., )k k m  - the inner 

boundaries (boundaries of bubbles); 
0

m

k
k

 


  - see Fig.1. 

 

 
Fig. 1. Region G  with multiply connected boundary   
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The free boundary evolution is determined from the condition of equality of the normal 
velocity nV  of the boundary and the normal component of the velocity of the fluid at the 
boundary: 

 ,nV v n   x  (4) 

In case of a volume force F acting on G, the equation of motion takes the form 

 
p

F
x






 


 (5) 

If the volume force is potential U
F

x



 


 one can renormalize the pressure p p U   and 

present (3), (5) in the form  

 0
p

x








 (6) 

 ,p n f    x  (7) 

where f f Un     is the renormalized surface force.  

2.2 The transformational invariance of the Stokes equations 
Let’s point out a specificity of the quasi-stationary Stokes approximation (1), (2). This system 
is invariant under the transformation 

 v v V e x        (8) 

where V  and  are constants, e  is the unit antisymmetric tensor. Therefore, for this 
approximation the total linear momentum and the total angular momentum are indefinite. 
These values should be determined from the initial conditions. 

2.3 The conditions of the quasi-stationary Stokes approximation applicability 
The Navier-Stokes equations 

 ,
pv v

v F
t x x

 
 

 

   

       
 (9) 

where  is the density of liquid, lead to the quasi-stationary Stokes equations (5) if the 
convective and non-stationary terms in (9) can be neglected. The  neglection of the 
convective term leads to the requirement of a small Reynolds number Re VL  , where V  
is the characteristic velocity, L is the spatial scale of the region G , and   is the kinematic 
viscosity. The non-stationary term in the equation (9) can be omitted if during the velocity 
field relaxation time 2T L   the shape of the boundary changes insignificantly, namely 
VT L  which again leads to the condition Re 1 . The change of the volume force F  and 
the surface force f during the time T  should also be small: 



 
Hydrodynamics – Advanced Topics 

 

80

 , ,a a
fF

T F T f
t t

 
 

   (10) 

For the forces determined by the region shape (like capillary force or centrifugal force) the 
conditions (10) lead to Re 1  again. 
The neglection of the non-stationary term is a singular perturbation of the motion equation 
in respect of the time variable. It leads to the formation of a time boundary layer of duration 
T , during which the initial velocity field relaxates to a quasi-steady state. The condition of a 
small deformation of the region during this time interval 0 0V T L  is ensured by the 
requirement of a small Reynolds number 0Re  constructed from the characteristic initial 
velocity 0V and the initial region scale 0L . 
Let’s integrate the motion equation (5) over the region G  and use the boundary condition 
(3). As a result we obtain the condition  

 0.F dG f d 
      (11) 

The equations of viscous fluid motion in the quasi-stationary Stokes approximation (5) 
have the form of local equilibrium conditions. Correspondingly, the total force   which 
acts on the system should be zero. The same way, using (5) and (3) one can obtain the 
condition 

 0.M e x F dG e x f d    
      (12) 

where e  is the unit antisymmetric tensor. Therefore, the total moment of force M acting 
on the system should be zero. 

2.4 The Stokes equations in the special noninertial system of reference 
Conditions (11) and (12) are the classical conditions of solubility of system (2), (5) with 
boundary conditions (3). Let’s show that these conditions are too restrictive. For example, 
for a small drop of high viscous liquid falling in the gravitation field the total force is not 
zero, but equal to the weight of the drop. Therefore, we cannot use the quasi-stationary 
Stokes approximation to describe the evolution of the drop’s shape due to capillary forces. 
But in a noninertial system of reference which falls together with the drop with the same 
acceleration, the total force is equal to zero.  
In a general case, the total force   and total moment of force M  acting on the system are 
not equal to zero. The Newton's second law for translational motion has the form  

 ,
d v

S
dt


   (13) 

where S is the area of the region, 1
v v dG

S   is the average velocity of the system, and 

 is the total force. Let’s choose the center-of-mass reference system K instead of the initial 
laboratory system K . The velocity and coordinate transformations have the form 

 , ,v v v x x x           (14) 
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where 1
x x dG

S    is the coordinate of the center of mass in the initial system K , 

d x
v

dt


  . In the new system the surface force is the same as in the initial system 

f f   , but the volume force transforms to F F      and total force is equal to zero: 
0   . So, we eliminated the total force   using a noninertial center-of-mass reference 

system K .  
The total moment of force in the new system stays unchanged: M M  .To eliminate the 
total moment of force M  we switch from the system K  to the rotating reference system 
K : 

 ,v v e x        (15) 

where is the angular velocity of the rigid-body rotation 

 ,d
I M

dt


  (16) 

 where I x x dG      is the moment of inertia of our system. In the new system the surface 
force is the same as in the initial system f f   , but the volume force transforms to: 

 22 ,F F e x e v x         
 

        
 

 (17) 

and the total moment of force is equal zero: 0M  . In case of a small Reynolds number, the 
Coriolis force 2 e v    is small compared with the viscous force. 
So in case of the total force   and total moment of force M  not equal to zero we can 
eliminate them using the noninertial reference system with the rigid-body motion due to the 
force and moment of force.  

3. Pressure calculation 
Let   and   be smooth fields in the region G  related by 

 2 .
x x




 





 

 
 (18) 

Multiplying the equation of motion (1) by  , integrating over G , and using (2), (3), (18), we 
obtain 

 1
2

p dG f d       (19) 

In the special case when 1  the expression (18) gives us x   and, according with (19),  

 1
2

pdG f x d      (20) 
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see (Landau &  Lifshitz, 1986 ). In a general case, according with (18),   is an arbitrary 
harmonic function and 1 2i     is the analytical function associated with  as 

  d i dz     (21) 

where   is a harmonic function conjugate to  .   
The expressions (18) and (19) are basic in our theory. There is also an alternative way to 
derive them. The equations of motion (1), continuity (2) and the boundary conditions (3) can 
be obtained from the variation principle (Berdichevsky, 2009). 

  21 2 0
4

p p p dG f v d    


 
   

 
   (22) 

or 

  1 2 0
2

p p p p dG f v d      


     (23) 

Since (23) is valid for arbitrary variations of pressure p  and velocity v  we choose them  
such that  p  is left unchanged:  

 0.
vv

p p
x x


 

 

   
 

         
 (24) 

In this case (23) gives us 

 1 0.p pdG f v d   


    (25) 

We introduce the one-parameter family of variations ,
2

v p


   


  . Then (24) and 

(25) take the form (18) and (19). 
Suppose Nx R . Then it follows from (18) that  

  
2

2 0.N
x x 


 

 
 (26) 

Therefore, in the three-dimensional case  is a linear function. Only in the two-dimensional 
case   can be an arbitrary harmonic function. Formulating in terms of (3.5), only in the two-
dimensional space there exists a non-trivial system of pressure and velocity variations 
providing zero stress tensor variation.  
The complete set of analytical functions k in the region G with the multiply connected 

boundary   consists of functions of the form  ,
ko

k mz z z


 , where o
mz are fixed points, each 

situated in one bubble. The complete set of harmonic functions k  can be obtained in the 
form of Re k and Im k . 
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According with (1), (2) the pressure p  is a harmonic function. We present it in the form  

 .k k
k

p p   (27) 

Using the expression (19) we obtain the algebraic system for coefficients kp : 

   1 , 0,1,...
2k n k n

k
dG p f d n          (28) 

4. Velocity calculation 
The stress tensor, expressed in terms of the Airy function , 

 
2 2

,p
x x x x 
   

   
 
   

 (29) 

satisfies the equation of motion (1) identically. The boundary conditions (3) take the form 

 
2

, ,e f x
x x  
 

 
  

 
 (30) 

where  are the components of the unit tangential vector to the boundary, its direction 
being matched to the direction of circulation. Integrating (30) along the component 
boundary k from a fixed point to an arbitrary one we obtain 

 , .k ke f d x
x  


  
 

   (31) 

Using (1), (29) and the explicit form of the stress tensor, we get 

 2 , ,d dv d x G
x  


  
 

   
 

 (32) 

where  

     1 2
1 2

2 1
, ,v v

d i p i
x x

    
  

     
  

 (33) 

 is a harmonic function conjugate to p , 

 2 .p
x x
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Therefore 

 ,n n
n

p    (35) 
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where kp are the coefficients of the pressure expansion (27). These coefficients are the 
solution of the system (28). According with (32) the velocity in the region G can be presented 
in the form 

 1 , .
2

v x G
x 


 

 

   
 

 (36) 

The first term in the right-hand part of (36) is the potential part of velocity; the second term 
is the vortex part. 
The gradient of the Airy function on the boundary was calculated in (31). Then we can 
calculate the velocity on the boundary as 

  1 , .
2 k kv e f d x     


    (37) 

The expression (37) gives us the explicit presentation of the velocity on the boundary.  

5. Limitations for the motion of the boundary 
5.1 The rate of change of region perimeter 
The strong limitation for the motion of the boundary is based on a general expression 
regarding the rate of change of perimeter L . To obtain this expression we use the fact 
(Dubrovin at al, 1984) that 

 ,
d

v n Hd
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   (38) 

where 
n

H
x








 is the mean curvature of the boundary. In the 2D case  is the perimeter 

of the region, and in the 3D case  is the area of the boundary. We introduce the operator 

of differentiation along the boundary D n n
x x  
 

 
 

 
. Then we can write (38) in the 

form  

 .dL
v D n d

dt       (39) 

Using the identity 

 0,D d    (40) 

where  is an arbitrary field which is continuous on the boundary, and also the equation of 
continuity (2) and the boundary conditions  (3) we can write (39) in the final form  
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This expression is valid for any flow of incompressible Newtonian liquid (without Stokes 
approximation), generally speaking, with variable viscosity. We will use it for a 2D flow 
(  =L is the perimeter of region), in case of constant viscosity: 

  1 .
2

dL
p f n d

dt   


    (42) 

5.2 The dynamics of bubbles due to capillarity and air pressure 
Let’s take into account the capillary forces on the boundary, the external pressure 0p  and 
the pressure inside of the bubbles , 1,2,...,k bp p k m  , equal in every bubble. Then the 
boundary force has the form 

 , ,k k
n

f n p n x
x
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where   is the coefficient of surface tension. Using (42), (43) we get 

    0 0
1 2 1 ,

2 b b
dL

pd p L p L m
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         (44) 

where 0L  and bL  are the perimeter of external boundary and the total perimeter of the 
bubbles correspondingly. 
Using (20) we obtain 

  0 0 ,
2b bpdG p S p p S L


     (45) 

where S  and bS  are the area of region and the total area of  the bubbles. 
For ,p      , the expressions (19), (34), (37) give us  

 
   

 

2 2 2 2
0 0 0 0

0

2

.

b b b b

b
b

p dG p L p L pd p S p p S

dS
p p

dt

 



      

 

 
 (46) 

Using (44) - (46) and the inequality  22 1
p dG pdG
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   we obtain the differential inequality 
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This expression gives us the possibility to obtain the strict limitations for the motion of the 
free boundary in some special cases. 
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5.3 The influence of capillary forces only 
In this case the inequality (47) may be simplified: 
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where m  is the number of bubbles. Let 2L S   be the asymptotic value of the perimeter 

and let 
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 (49) 

where  upL   is the upper limitation for time dependence of the perimeter - see Fig.2. 
The perimeter of system L lies in the interval  upL L L    . 
 
 

 
Fig. 2. The upper limitation for the time dependence of the perimeter for various number of 
bubbles m . 

Therefore, if we have no bubbles in the region, the characteristic dimensionless time of 
relaxation of the boundary to the circle 0 1  . In case of one bubble  1m  ,  upL L  at 
the time 1 01 L L     . The system with this topology can exist in this time period only. 
The bubble must collapse or break into two bubbles in time * 1  . In case of 2m   bubbles, 
such configuration will exist during the time  
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5.4 Bubbles in an infinite region 
The outer boundary of the region is a circle with a large radius R . The bubbles are localized 
around the center of the circle. Using the expressions 2 , 2b bR S S L R L     , we can 
see that the inequality (47) in the limit R   takes the form 

   2
0 ,b

dW
p p W m

dt
      (51) 

where  0b b bW L p p S   . Therefore, at 0 0bp p   
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Because 0W  , this configuration exists without change of the number of bubbles during 
the time  
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6. Motion of the boundary due to capillary forces 
6.1 Calculation of pressure and velocity 
In case of capillary forces action 
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and expression (19) takes the form 
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or 
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The expression (56) is valid for any harmonic function . Let’s apply p  . Then we obtain 
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It can be seen from (58) that  

 .p p   (59) 

Introducing the generalized function (simple layer) 

  ( ) ,s dl   yx x y  (60) 

we see that p is the projection of s  onto the subspace of harmonic functions. 
Introducing in G  a complete system of orthonormal harmonic functions   0k k 

  which 
obey the orthogonality condition k n knG   , we obtain from (56) the following 
expression for the pressure 
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In case of capillary forces the expression (37) takes the form 

  1 , .
2

v n x    


    (62) 

6.2 Relaxation of a small perturbation of a circular cylinder 
Consider a small perturbation of the circular cylinder boundary, given by  ,r R h t  , 
h R . Then we have from (62) 

  exp ,
2 k

k

h
k ik h

t R
 







 

   (63) 

    
2

0
( ) exp , (0)exp ,

2 2k k
k td

h t ik h t h
  

 
 

    
 

  (64) 

in agreement with (Levich, 1962). According with (64), a small boundary perturbation of 

characteristic with a R  and amplitude H a  has a characteristic decay time ~ a


. 

6.3 The capillary relaxation of an ellipse 
Let’s test our theory on an example of a large amplitude perturbation. We calculate the capillary 

relaxation of boundary with initial shape 
2 2
1 2
2 2 1x x

a b
   in two ways - using the numerical 

calculation based on (6.4) and the finite-element software ANSYS POLYFLOW (see Fig. 3 and 
Fig.4). These methods of calculation give us the same results with discrepancy about 1%.  

6.4 The collapse of a cavity 
Let’s now consider a large amplitude perturbation in the shape of a cavity (Fig. 5). By 
symmetry, the pressure must be an even function with respect to 2x , i.e. 
   1 2 1 2, ,p x x p x x  . 
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Fig. 3. Computational domain used in finite-element calculation of ellipse relaxation. 

 
Fig. 4. Relaxation from ellipse to a circle in finite-element calculation. 

We introduce a space of two-variable harmonic functions which are even with respect to the 
second argument, and choose in it the complete system of functions in the form 

 cosn
n r n   ( r  and   are the polar coordinates in the 1 2,x x  plane). Since the width   

is small 2
2( 1)

n mn
m n g R

n
  


. Then the complete system of orthogonal harmonic 

functions in this space is  
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Inserting (65) in (61) and summing the series yields 
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Fig. 5. Cavity perturbation. 

whence, using (35), we have  

  
 

221 ln .
R R H zH z

R R R H R
 

 

               
 (67) 

In spite of the logarithm, (67) is a single-valued analytical function in G , because the 
boundary perturbation constitutes a branch cut. If we insert (67) in (62), we find that the 

normal velocity of the cut edges 
2

V



 (in the zero approximation with respect to the small 

parameter  
H
 ). The edges close up after a time 


 . Although capillary forces generally 

tend to flatten the boundary perturbation, in this case they produce the opposite effect. 
Acting to reduce the length of the cut, the capillary forces generate a flow of scale H  in the 
region. The velocities along 1x  and 2x  have the scales H  and  , respectively. If we equate 
the work of surface-tension force with the rate of energy dissipation by viscous forces, we 

find that 
2

2H
H H

H
 

 
   

 

  or H



    ; this conforms to the rigorous result we 

obtained before. 
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7. Conclusion 
We presented a method to calculate two-dimensional Stokes flow with free boundary, based 
on the expansion of pressure in a complete system of harmonic functions. The theory forms 
the basis for strict analytical results and numerical approximations. Using this approach we 
analyse the collapse of bubbles and relaxation of boundary perturbation. The results 
obtained by this method are correlating well with numerical calculations performed using 
commercial FEM software. 
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1. Introduction 
This paper is aimed at revealing the mechanisms of therapeutic effects stimulated by a 
medium power (1–10 W) fiber laser induced hydrodynamics in water-saturated bio-tissues. 
Modern laser medical technologies widely employ delivery of laser light to irradiated tissues 
via optical fibers. Optical fiber easily penetrates through needle and endoscopic channels, and 
laser light can be delivered through a fiber for puncture and endoscopic operations. Several 
laser medical technologies (puncture multichannel laser decompression of disc, laser 
intervention upon osteochondrosis, surgical treatment of chronic osteomyelitis, endovenous 
laser ablation, etc.) are based on effective hydrodynamic processes in water-saturated bio-
tissues. These hydrodynamic processes trigger cellular response and regenerative effects 
through the  specific mechanisms of mechano-biology. In this work, we consider different 
kinds of effects stimulated by a medium power laser-induced hydrodynamics in the vicinity of 
a fiber tip surface, in particular, generation of vapor-gas bubbles, fiber tip degradation, and 
generation of intense acoustic waves. Presence of strongly absorbed agents (in a form of Ag 
nanoparticles, in particular) in laser irradiated water nearby optical fiber tip results in 
appearance of pronounced filamentary structures of these agents. 

2. Therapeutic motivation 

One of the modern tendencies in a low-invasive medical therapy is a medium power (1–10 
W) laser treatment of connective tissues. The examples of such technologies are: laser 
engineering of cartilages (Bagratashvili et al., 2006); puncture multichannel laser 
decompression of disc (Sandler et al., 2002; Sandler et al., 2004); laser intervention upon 
osteochondrosis (Chudnovskii & Yusupov, 2008); laser treatment of chronic osteomyelitis 
(Privalov et al., 2001); endovenous laser ablation (Van den Bos et al., 2009); fractional 
photothermolysis (Rokhsar & Ciocon, 2009). 
Treatment of osteochondrosis, for example, is based on laser-induced (0.97 µm in 
wavelength and 2–10 W in power) formation of multiple channels inside an intervertebral 
disc using silica fiber with a carbon coated fiber tip surface, in order to enhance laser light 
absorption nearby the fiber tip. Osteochondrosis is caused by such partial destruction of 
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intervertebral disc, followed by release of nucleus pulposus from disc in the form of hernia, 
which exerts pressure upon nervous roots thus giving pain. Fig 1а shows the scheme of 
formation of multiple laser channels inside intervertebral disc in the course of laser 
treatment of osteochondrosis (Sandler et al., 2002; Sandler et al., 2004; Chudnovskii & 
Yusupov, 2008). Transport laser delivery fiber passes inside the disc under treatment 
through a thin needle inserted to the disc (laser puncture procedure). Optical fiber is 
inserted through a thin needle via a posterolateral percutaneous approach under a local 
anesthesia. Important, that saline water is permanently introduced into the disc through the 
needle. Channel is formed by the heated fiber moving forward inside the disc. The fiber 
forms the channel and is shifted 1 -2 cm per 5 – 10 s inside the disc. Fig. 1b shows the 
example of such channels in nucleus pulposus of spinal disc formed by a fiber laser in the 
course of laboratory experiment (Sandler et al., 2004).  
 

 
Fig. 1. a - Scheme of laser irradiation of  spinal disc. b – Laser channel formed in spinal disc 
through optical fiber in presence of physiological solution  (Sandler et al., 2004). 

Surprisingly, that such action on herniated disc causes significant effect in some period of 
time on tissues located out of laser irradiated zone. As one can see, for example, on 
tomography picture (Fig. 2b), some cavities appear in the hernia, and its density decreases 
significantly compared with the density of hernia before laser treatment (Fig. 2a).  
 

 
Fig. 2. Computer tomography pictures of herniated disc area. a– before healing: big 
sequester of hernia (side view); b - cavity inside hernia, stimulated by laser-induced channel 
formation in disc; с –three month after laser healing : no hernia.  
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As a result, the hernia transforms into a soft sponge, the pressure of hernia on nervous roots 
decreases, and relevant pain releases. The hernia itself disappears after some period of time, 
and regenerative processes take place which result (in a few month) in recovery of the disc 
structure and their main functions (Sandler et al., 2002, 2004; Chudnovskii et al., 2008, 2010a, 
2010b).  
Another important example of a medium power laser therapy is a laser treatment of chronic 
osteomyelitis. Fig. 3а demonstrates the X-ray image of femoral bone of the 14 year old 
patient heavily affected by osteomyelitis (Privalov et al., 2001). Significant destruction and 
rarefication of bone structure takes place. Typically, such bone tissue degradation requires 
amputation of organ. However, application of medium power laser treatment approach in 
this case gave, as a result, a complete regeneration of affected femoral bone (Fig. 3b), and no 
amputation was required. Again, therapy was based on a medium power laser-induced 
formation of channels (similar to that presented at Fig.1) in a bone medullary tissue, which 
stimulate successively the regeneration processes in the bone tissue. 
 

 
Fig. 3. X-ray images of right hip of the 14 y.o. patient with chronic osteomyelitis (Privalov et 
al., 2001). a - destruction and rarefication of bone structure before treatment. b - complete 
regeneration of bone structure 11 month after laser treatment. 

Strong regenerative potential of medium power laser treatment for different kinds of tissues 
is already well recognized (Sandler et al., 2002, 2004; Chudnovskii & Yusupov, 2008, 
Chudnovskii et al., 2010a, 2010b), however the dominant primary physical mechanisms of 
such regeneration are still the subject of controversy. It is commonly accepted that the effects 
of medium power laser irradiation result from laser heating of tissues. However in most of 
cases, the pronounced therapeutic effect cannot be rationalized by laser-induced thermal 
tissue degradation only. For example, appearance of cavities in the hernia and significant 
decrease of its density observed immediately after laser manipulation (Fig. 2b), takes place 
without its heating, since hernia is located quite far from the area of laser-induced channel 
formation, and, thus, heating of hernia is negligible.  
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We believe that effective hydrodynamic processes play dominant role for the effect of a medium 
power laser-induced regeneration and healing of connective tissues diseases (intervertebral 
hernia, osteomyelitis and some other diseases) using laser puncture procedures 
(Chudnovskii & Yusupov, 2008; Chudnovskii et al., 2010a, 2010b). Main features of these 
processes will be considered below. 

3. Laser-induced generation of micro-bubbles in water 
The key process for the mechanism of medium power laser-induced regeneration and 
healing of musculoskeletal system diseases is the generation of micro-bubbles in inter-tissue 
water (Yusupov et al., 2010).  

3.1 Laser-induced generation of micro-bubbles in a free water 
Formation of micro-bubbles in a free water was studied with the aid of the optical methods 
using a water filled plastic cell (the horizontal dimensions are 150 × 100 mm and the height 
is 15 mm) and glass capillaries with an inner diameter of 1 mm. In the most of experiments, 
the working fiber tip is preliminary blackened by a short (~1 s) contact of the fiber tip with a 
wooden plate at a laser power of about 3 W. The fiber tip surface thus covers by a thin 
carbon layer owing to the wood burning. Such a procedure is well reproduced, so that from 
10 to 20% of the laser power is absorbed in the thin carbon layer. Computer controlled fiber 
lasers (LS-0.97 and LS-1.55 of IRE–Polus, Russia) with the wavelengths of 0.97 μm and 1.55 
μm, 1–10 W in power were interfaced with a 400 μm core diameter silica fiber. Low intensity 
(up to 1 mW) green pilot beam from the built in diode laser was used to highlight the laser 
irradiated zone in the cell. The fiber is horizontally fixed in the cell, which is placed on the 
worktable of a MICROS MC300 microscope equipped with a Vision digital color camera 
interfaced with PC. The water cell was also placed on the table with illumination, and the 
processes in the vicinity of the heated fiber tip were visualized using a Photron Fastcam SA-
3 camera at rates of 2000 or 10000 frames per second. To control the laser induced spectrum, 
an Ocean Optics USB4000 fiber spectrum analyzer was used, which is interfaced with PC 
and has an optical resolution of about 1.5 nm and 200–1100 nm wavelength range. For better 
visualization of hydrodynamic flows the collargol (albumin coated Ag nanoparticles) have 
been added to water in the cell (Yusupov et al., 2011b).  
Hydrodynamic flows taking place nearby the fiber tip when laser power is on, can be clearly 
seen in a scattering mode using illumination with green light of pilot laser beam through the 
same transport fiber (Fig. 4). Such flows result in intrusion of collargol from neighboring 
area into the area in front of the fiber tip. One can also see here the initial process of new 
intrusion formation (outlined with a dashed line). The rate of rise-up front of a given 
intrusion (which is about 150 μm in average thickness) is found to be described by 
exponential low (Yusupov et al., 2011b) 

 0.6 exp( 1.5 )   V r , (1) 

where r is the distance from fiber tip: at 1 mm from fiber tip V = 150 μm/s, while at 2 mm 
from fiber tip V falls down to 30 μm/s. 
The bubbles don’t occur up to laser power of 10 W with non-blackened fiber tip and for 0.97 
μm laser radiation, while for 1.56 µm laser radiation (which is much stronger absorbed by 
water) the bubbles are generated at about 1 W of laser power. Blackening of fiber tip results 
in generation of bubbles for both 0.97 µm and 1.56 µm laser wavelengths. 



 
Laser-Induced Hydrodynamics in Water and Biotissues Nearby Optical Fiber Tip 

 

99 

 
Fig. 4. Microscope pictures (in scattering mode) of intrusions of Ag nanoparticles in water 
(outlined with dashed line) stimulated by laser induced hydrodynamics nearby optical fiber 
tip at 1.0 W of 0.97 µm laser power in 6 s (a), 12 s (b), and 18 s (c) of laser irradiation. Fiber 
tip is shown by dashed line (Yusupov et al., 2011b). 

Energy of incident laser light is partly (10–20%) absorbed by the carbon layer on the 
blackened fiber, so that the fiber is heated. When laser radiation with a power of greater 
than 3 W is transmitted by the fiber tip in air, the spectrum of the optical radiation from the 
fiber tip contains the fundamental line (0.97 µm or 1.56 µm) and the broadband visible and 
near-IR radiation caused by the heating of the tip surface to relatively high temperatures. 
When a blackened tip is placed into water, the tip surface is effectively cooled and the 
absence of the broadband radiation means the substantially lower temperatures of the tip 
surface. However, a medium power laser radiation (1–5 W) is sufficient for surface heating 
and generation of vapor-gas bubbles. When water is heated, the dissolved gases are 
liberated in the vicinity of the tip surface and gas bubbles emerge. Water is evaporated 
inside the bubbles, so that the bubbles are filled with vapor and, consequently, increase in 
size. At the lower boundary of the above power interval, the bubbles increase in size 
residing on the tip surface (Fig. 5a). When a critical size is reached, the bubbles are detached 
and move to the surface. 
Water molecules which approach the heated tip surface acquire additional kinetic energy 
and momentum. The component of the total momentum of vapor molecules that is directed 
perpendicularly to the tip surface of the fiber towards water appears insufficient for the 
detachment of the bubble. Figure 5a shows that the bubbles sizes can be close to the 
diameter of the silica fiber core (400 µm). In the experiments, the bubbles normally emerge 
at same spots on a tip surface, which correspond to a high temperature areas. Evidently, the 
presence of such spots is related to the nonuniformity of the carbon layer: the absorbed 
energy (and, hence, the temperature) is greater for thicker regions. The stabilization (i.e., the  
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Fig. 5. Laser-induced generation of microbubbles in the vicinity of the blackened end surface 
of the optical fiber in water for the laser radiation with a wavelength of 0.97 µm and a power 
of (a) 1 and (b) 5 W. The photograph is taken from above at an exposure time of 250 ms. 

attachment of the vapor-gas bubbles to the high temperature spots) can be caused by two 
reasons. First, the temperature at the hot spot additionally increases owing to the formation 
of the bubble and the consequent decrease in the local heat sink to water. The second reason 
is related to the Marangoni effect (Berry et al., 2000): the temperature gradient gives rise to 
the gradient of surface tension, so that convective flows emerge on the surface of the bubble 
and cause the force that presses the bubble to the hot spot. The experiments on the growth 
of the bubbles in the vicinity of the tip surface show that the rate of growth gradually 
decreases and, finally, the growth is terminated. At a laser power of 1 W, the duration of a 
relatively fast growth is about 200 ms. Bubble size increases at this stage from zero to 25% of 
the maximum size. Then, over a few seconds, the growth is well described with the formula 
(Yusupov et al, 2010): 

 4/5D t , (2) 

where D is the diameter of bubble and t is time. When laser light is terminated (Fig. 5a), the 
size of bubble gradually decreases (the bubble remains attached to the tip surface of the 
fiber) and, finally, the bubble vanishes. Note that a decrease in the size is also non-
monotonic. At the first stage with a duration of less than 1 s, the diameter decreases by 8–
10%. Then, the slowing takes place. Such a non-monotonic behavior must be related to the 
fact that the size of bubble decreases at the first stage predominantly, due to a decrease in 
the temperature of the vapor-gas mixture inside the bubble to the temperature of water in 
the cell, whereas the second stage is isothermal. The lifetime of such bubbles ranges from 3 
to 8 h, and the rate of a decrease in the diameter with time always monotonically increases. 
At the second stage, the dependence of the diameter on time is well approximated with the 
formula(Yusupov et al., 2010): 

 0 0(1 / )   D D t , (3) 

where D0 is the initial diameter, τ0 is the lifetime, and α = 0.1–0.5 is the empirical parameter. 
Note a similar decrease in the diameter with time at α = 0.5 in (Taylor & Hnatovsky, 2004). A 
qualitatively different scenario corresponds to higher laser powers. The explosive boiling of 
water is observed in the vicinity of the hot end: the vapor-gas bubbles are ejected from the 
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fiber to water (Fig. 5b) and, then, the velocity decreases due to viscosity. At a finite exposure 
time the tracks of bubbles moving in water was observed. Notice that the track length 
corresponds to the mean velocity of the bubble over the exposure time. Bright spots in the 
vicinity of the tip surface (Fig. 5) are related to stray light: the Vision video camera is 
sensitive to the near-IR laser radiation. 
The side measurements (Fig. 6a) show that the bubbles come to the surface at a certain 
distance from the fiber. Knowing the vertical velocity of the bubbles (about 5 mm/s in 
accordance with visual observations) and the trajectories, we can estimate the horizontal 
velocity (Fig. 6b). The analysis of the trajectories yields an exponential decrease in the 
horizontal velocity with increasing distance from the fiber: for the slowest and fastest 
bubbles, we obtain the dependences(Yusupov et al, 2010) 

 67 exp( 0,82 )   V r  (4) 

and  

 101 exp( 0,74 )   V r , (5) 

respectively, where V is the horizontal velocity in mm/s and r is the distance from the fiber 
tip surface in millimeters. The relationships show that the velocity of bubbles at the moment 
of the detachment from the fiber tip (r = 0) ranges from 67 to 101 mm/s. 
 

 
Fig. 6. a -  Side view of the tracks of microbubbles in the vicinity of the blackened optical 
fiber tip surface in water; b - Plots of the horizontal velocity vs. distance from the end 
surface for slowest (1) and fastest (2) bubbles at a laser wavelength of 0.97 µm and a power 
of 5 W (Yusupov et al., 2010). 

We have directly observed motion of bubbles even in the immediate vicinity of the surface 
tip (at the maximum velocities) in the experiments on the generation of microbubbles 
performed with the aid of the Photron Fastcam SA3. Fig. 7 shows the bubbles as dark 
circles with different sizes. Previous (at time step Δt) positions and sizes are shown as 
open circles, and the trajectories are shown as rectilinear segments. Table 1 presents the 
calculated sizes and velocities of the bubbles shown in Fig. 7. It is seen that the bubble 
with a diameter of 47 μm (bubble 7 in Fig. 7a and Table 1), which is initially located at a 
distance of about 100 μm from the fiber tip, moves at a mean velocity of 97 mm/s over the 
observation interval (4.4 ms).  
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Closed circles 1–7 show positions of bubbles, open circles show previous positions, and rectilinear 
segments show bubbles trajectories.  
The images are taken from above at rates of (a) 10000 and (b) 2000 frames per second. 
Laser powers of (a) 3 and (b) 6 W, time intervals Δt = (a) 4.4 and (b) 2.0 ms, and a laser wavelength of 
0.97 µm. 
The pulse duration is 50 ms and the interval between pulses is 500 ms. 

Fig. 7. Displacements of microbubbles (that are generated in the vicinity of the schematically 
shown blackened tip surface of quartz fiber I) over short time intervals Δt in the presence of 
laser radiation (Yusupov et al., 2010). a - CW laser radiation. b - Pulsed laser radiation. 

Such result is in good agreement with the above estimations of the initial velocities in the 
vicinity of the fiber tip. The velocities of the bubbles rises rapidly with increasing distance 
from the fiber: the velocities are not higher than 50 and 20 mm/s at distances of 0.5 mm and 2 
mm, respectively (Table 1). When bubbles are generated in a viscous liquid over a relatively 
long time interval the steady-state flow results in increase of the bubbles velocities. To 
determine the relative contribution of such a flow, we have measured the motion of 
microbubbles under the pulsed laser irradiation (Fig. 7b). It is seen that the bubbles 
predominantly move at relatively large angles relative to the fiber axis. That is caused by the 
features of the tip surface and hydrodynamic effects. Note that the asymmetry also 
corresponds to the motion of microbubbles under the continuous wave laser irradiation.  
 

Number of the 
bubble (Fig. 7) 

Parameters of radiation

CW radiation, 3 W
(Fig. 7a) 

pulsed radiation, 6W 
(Fig. 7b) 

Diameter, μm Velocity,
mm/s 

Diameter, μm Velocity, 
mm/s 

1 26 9 17 38 

2 26 9 10 37 

3 200 3 10 5 

4 58 16 41 60 

5 42 12 21 20 

6 63 48 21 52 

7 47 97 27 32 

Table 1. Parameters of the bubbles shown at Fig. 7 
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Figure 7b and Table 1 show that a short laser pulse with power of 6 W causes generation of 
many bubbles, whose diameters range from 10 to 41 μm. The velocities of bubbles are 60 
and 20 mm/s in the vicinity of the fiber and at a distance of 300 and 800 µm, respectively. In 
spite of a twofold increase in the laser power, the maximum velocities of the bubbles in the 
vicinity of the fiber under the pulsed irradiation are significantly less than the velocities 
corresponding to the continuous wave irradiation. At a relatively large distance from the 
fiber end, the velocities corresponding to the pulsed irradiation are also less than the 
velocities corresponding to the continuous wave irradiation: the velocity of bubble 4 in Fig. 
7a is almost equal to the velocity of bubble 5 in Fig. 7b, whose distance from the fiber tip is 
almost two times shorter. Such result indicates to the presence of water flows in the case of 
the continuous wave laser irradiation and shows that the flow velocity is comparable with 
the mean velocity of bubbles. 
 Such liquid flows are more clearly observed in the microscopic measurements of the laser-
induced hydrodynamic effects in the vicinity of the fiber tip surface of the fiber that is 
placed in a glass capillary filled with water. 

3.2 Laser-induced generation of micro-bubbles in a glass capillary 
Liquid flows are more clearly observed in the microscopic measurements of the laser-
induced hydrodynamic effects in the vicinity of the fiber tip surface of the laser fiber that is 
placed in the glass capillary filled with water (model of the laser channel).  
As it follows from Fig. 8, the attached vapor-gas bubbles at a laser power of 1–2 W emerge at 
the tip surface and the convective motion is observed in the liquid. A qualitatively different 
scenario corresponds to a power of 3 W: the microscopic bubbles ejected from the fiber tip 
move along arc shaped trajectories and entrain liquid flows (Fig. 8a). The intensity of the 
resulting vortices rapidly increases with increasing radiation power (Fig. 8b). In accordance 
with the estimations based on the frame-to-frame analysis of the video records, the period of 
the typical circulating liquid flows at laser powers of 3– 5 W ranges from 0.2 to 1 s. Note that 
the above effects can be observed in the experiments with the blackened fiber tip at both 
laser wavelengths (0.97 µm and 1.55 μm). In the absence of the preliminary blackening, the 
effects are observed only for a radiation wavelength of 1.55 μm. Such a difference is caused 
by the fact that the radiation with a wavelength of 1.55 μm (unlike the short wavelength  

 

 
Fig. 8. Water flows that actively circulate inside the glass capillary (with a diameter of 1 mm) 
in the vicinity of the blackened tip surface I heated by the laser radiation with a wavelength 
of 0.97 µm and a power of 3 W (a) and  5 W (b)  
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radiation) is capable of heating a thin water layer in the vicinity of the tip surface to the 
boiling point, since the absorbance at a wavelength of 1.56 µm is higher than the that at a 
wavelength of 0.97 µm by a factor of about 20 (Hale & Querry, 1973).  
It is possible to visualize the hydrodynamic flows occurring in capillary and caused by 
laser-induced bubbles generation by microscope visual observing the meniscus. To 
accomplish this, the silica optical fiber with a 400 m diameter was introduced into a thin 
water-filled capillary with a 500 m internal diameter. The volume of liquid in a capillary 
was about 20 mm3, and meniscus was located at a 25 mm distance from the fiber tip 
surface.  
Fig. 9 demonstrates the observed variations of a meniscus shape in a glass capillary at a 
power of laser radiation of 1 W and at laser wavelength of 1.56 m. Switching of laser 
radiation on has resulted in growing the distance between optical fiber tip surface, which is 
caused by the fact that vapor-gas bubbles are formed in a liquid in the course of laser 
irradiation nearby a fiber tip. Simultaneously with a gradual rise of average volume of 
liquid in a capillary, quite a strong variations of meniscus shape takes place in this case, 
which are caused by hydrodynamic processes observing in a capillary water cell. At a 
certain period of laser irradiation time even water flows occur (Fig. 9b and 9c) caused, 
presumably, by the appearance and fast motion of quite large vapor-gas bubbles in a water 
capillary cell. Decrease of laser power causes increase of water streams, and in some cases 
the eruption of some portion of liquid from a capillary takes place.  
 

 
Fig. 9. Variation of a meniscus shape in a capillary caused by laser induce hydrodynamics 
and bubbles formation. Laser wavelength is 1.56 µm, laser power – 1W, internal diameter of 
capillary - 500 m. 
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Knowing the level of the meniscus in a capillary it is possible to determine easily the total 
volume of vapor-gas bubbles. Fig.10 shows change in the volume of generated bubbles at 
different laser powers and different laser wavelengths. Our experiments show that the total 
volume of bubbles rises gradually with time by a logarithmic low after the laser radiation 
switching on. The total volume at 1 W of laser power rises with time monotonically for both 
wavelengths, while at higher laser power quite strong fluctuations take place, with the 
growing in time amplitude. As this takes place, at laser power of 3 W the strong eruption of 
liquid from the capillary was observed after 4.7 s of laser irradiation (curve 3 at Fig. 10a). At 
that moment the curve 3 interrupts, since the meniscus went out of visualization zone 
because of the abrupt decrease of meniscus level.  
The total volume of generated bubbles increases with laser power. Comparison of curves 1 
and 2 at Fig.10b shows that twofold increase of laser power (from 1 to 2 W) causes about the 
fourfold rise of the generated bubbles volume. After the laser radiation switching off, the 
total volume of bubbles first rapidly decreases (vapor condensation inside bubbles), ant next 
decreases more slowly. It should be noted that quite a strong low-frequency oscillations are 
observed, caused by variation of total bubbles volume in a capillary. 
 

 
In the case of 0.97m wavelength the fiber tip surface was covered by a thin carbon layer.  
Arrows show the moments of laser on and laser off.  
Digits at curves shows laser power in Watts. 

Fig. 10. Change of the total bubbles volume at different powers of lasers with 0.97 m (a) 
and 1.56 m (b) wavelengths of radiation.  

Thus, the hydrodynamic processes related to the explosive boiling in the vicinity of the hot 
tip surface are observed in the liquid even at medium laser powers. Note that the 
intracapillary liquid exhibits effective mechanical oscillations with a frequency of 1– 5 Hz 
and appears saturated with microbubbles. We expect the development of such laser-induced 
hydrodynamic processes in water-saturated biotissues at medium laser powers.  
On the one hand, such processes provide the saturation of cavities and fractures in a spinal 
disc or bone with the water solution containing vapor-gas bubbles. On the other hand, they 
give rise to high-power acoustic oscillations and vibrations in the organ containing the 
connective tissue. Apparently, the filling of hernia with vapor-gas bubbles provides the 
reproducible decrease in the density of herniation immediately after the laser treatment 
(Sandler et al., 2004; Chudnovskii & Yusupov, 2008).  
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It is known from (Bagratashvili et al., 2006) that the mechanical action on cartilages in the hertz 
frequency range actively stimulates the synthesis of collagen and proteoglycans even at 
relatively small amplitudes. The above estimations show that the pressure on biotissue 
provided by the vapor-gas bubbles can reach tens of kilopascals. In accordance with 
(Buschmann et al., 1995; Millward-Sadler & Salter, 2004), such pressures in the hertz frequency 
range can lead to regenerative processes in cartilage owing to the activation of the interaction 
of the extracellular matrix with the mechanoreceptors of chondrocytes (integrins). 

3.3 Laser-induced generation of bubbles microjets 
Note an interesting phenomenon in the experiments on the generation of bubbles in the 
vicinity of the blackened tip surface of the fiber in the water cell: bubble microjets can be 
generated at a laser power of less than 3 W (Fig. 11) (Yusupov et al., 2010). The lengths of the 
microjets (Fig. 11a), which always start in the immediate vicinity of the fiber tip, reach 
several millimeters, the transverse sizes normally range from 10 to 50 μm, and the sizes of 
the bubbles that form the jets range from several to ten microns. The lifetime of the microjets 
ranges from a few fractions of a second to tens of seconds. A microjet that emerges at a 
certain spot on the tip surface remains attached to this spot and exhibits bending relative to 
the mean position. Bubble microjets didn’t use to be continuous from start to end, the 
discontinuities used to appear on them, which used to restore quite often. The observations 
show (Yusupov et al., 2010) that the discontinuities are always related to the hydrodynamic 
perturbations and are caused by relatively large bubbles that move in the vicinity of the 
microjet. The appearance of quite a large bubble attached to the fiber tip caused the bubble 
microjet bending around large bubble (Fig. 11b). Thus, we conclude that two conditions 
must be satisfied for the generation of the bubble microjets. First, a hot spot must be formed 
on the tip surface. Second, the neighborhood of such a spot must be free of the centers that 
provide the generation and detachment of large bubbles. Note that the possibility of bubble 
microjets in the vicinity of a point heat source is demonstrated in (Taylor &  Hnatovsky, 
2004). 
 

 
Fig. 11. Bubble microjets in the vicinity of the tip surface of optical fiber. 

A part of the blackened fiber tip is sown at the right upper corner. 

4. Degradation of optical fiber tip 
Laser-induced hydrodynamic effects in water and bio-tissues can lead to the significant 
degradation of the fiber tip (Yusupov et al., 2011a). The most significant degradation of the 
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fiber tip surface occurs in the regime of channel formation when the fiber is shifted inside the 
wooden bar that mimics the biotissue. In this case, we observe substantial modifications and 
distortion of tip surface. The comparison of the sequential photographs (Fig. 12) shows a 
significant increase in the volume of the fiber fragment (swelling) in the vicinity of fiber tip. 
 

 
Fig. 12. Modifications of the profile of the blackened fiber tip surface (side view) for regime 
of channel formation (the channel is formed by the fiber that moves inside the wooden bar 
with water and the radiation power is 5 W). The left-hand panel shows the original fiber just 
after its blackening (Yusupov et al., 2011a). 

SEM images (Fig. 13) show that the laser action in the regime of the channel formation in the 
presence of water causes substantial modifications of the working surface: the sharp edge is 
rounded and surface irregularities (craters) emerge on the tip surface. The image shows that 
a thin shell (film) with circular holes is formed at the tip surface of the optical fiber. Multiple 
cracks pass through some of the holes. In addition, we observe elongated crystal-like 
structures on the surface (Fig. 13b). Looking through the largest hole in the film on the tip 
surface (at the center of the lower part of the fragment at Fig. 13a), whose dimension in any 
direction is greater than 10 µm, we observe the inner micron-scale porous structure. 
 

 
Fig. 13. The microstructure of the fiber tip surface after laser action. a - SEM image of a 
fragment of the fiber end surface; b -  magnified SEM image of a fragment of the end surface 
with the crystal-like structures on the surface (Yusupov et al., 2011a). 
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Typical micron-scale circular holes on the film surface (Fig. 13a) can be caused by cavitation 
collapse of single bubbles. It is well known that cavitation collapse of bubbles in liquid in 
the vicinity of the solid surface gives rise to the high-speed cumulative microjets which can 
destroy the solid surface (Suslick, 1994). Apparently, this effect leads to multiple cracks on 
the film and the formation of the porous structure (Fig. 13a), since the cumulative microjets 
can punch holes, cause cracks in the film, and destroy the structure of silica fiber tip. 
Collapse of cavitation bubble apart from high pressure generation (up to106 MPa) can cause 
overheating of gas up to temperatures as high as 104К. Such high values of water pressure 
and temperature can result in formation of supercritical water (critical pressure of water is 
Рc=218 atm, critical temperature - Tc =374ºС), which can dissolve silica fiber (Bagratashvili et 
al., 2009).  
Fig. 14 shows Raman spectra of some areas of laser irradiated fiber tip surface (curves 3-5) 
compared with that of graphite (1) and diamond (2). Raman bands at 1590 cm-1 and 1590 cm-

1 to diamond and graphite nano-phases correspondingly (Yusupov et al., 2011a). 
 

 
Fig. 14. Raman spectra from different areas of laser fiber tip surface (curves 3, 4 and 5) 
compared with that of graphite (1) and diamond (2) (Yusupov et al., 2011a). 

Formation of diamond nanophase at a fiber tip surface in this case is rationalized by 
extremely high pressures and temperatures caused by cavitation processes stimulated by 
laser irradiation (Yusupov et al., 2011a). 

5. Laser-induced acoustic effects 
Laser-induced hydrodynamics processes in water-saturated bio-tissues causes generation of 
intense acoustic waves. We have studied the peculiarities of generation of such acoustic 
waves in water and water-saturated biotissue (intervertebral disc, bone, et al.) in the vicinity 
of blackened optical fiber tip using acoustic hydrophone (Brul and Kier 8100, Denmark). The 
hydrophone with 0 – 200 KHz band was placed in water or biotissue at 1cm distance from 
optical fiber tip. Fig. 15 demonstrates typical example of acoustic response to laser 
irradiation for two different cases: in the bath of free water (Fig. 15a) and in the case of water  
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The fiber tip surface is blackened before laser irradiation with 0.97 µm wavelength. 

Fig. 15. Fragments of acoustic response to 3 W laser irradiation of water for two different 
cases: in a bath of free water (a) and in a water-filled capillary (b). 

filled capillary (Fig. 15b). In the case of the bath with free water, the short random laser- 
induced acoustic spikes take place. At the same time, the acoustic response to laser 
irradiation in the case of water-filled capillary (which imitates situation in real water-filled 
biotissue channel) is different (Fig. 15b). Acoustic signal is amplitude-modulated by its 
feature, and low-frequency modulation period is about 2 s.  
Fig. 16 demonstrates acoustic response to laser irradiation of nucleus pulposus in vivo when 
optical fiber was moved forward (regime of channels formation in the course of laser 
healing of degenerated disc). The acoustic signal is non-stationary by its nature. The short-
pulse intense acoustic spikes take place and the signal itself is amplitude modulated 
(similarly to that in water-filled capillary) with a modulation period of about 3 s. 
 

 
Arrows show the moments of laser on and laser off.  

Fig. 16. Acoustic response to 3 W laser irradiation with 0.97 µm wavelength of nucleus 
pulposus in vivo, when optical fiber was moved forward in the intervertebral disc.  
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The more detailed studies show that for both in vivo and in vitro cases laser-induced generation 
of short-pulse intense quasi-periodic acoustic signals. The fragment of spectrogram  of acoustic 
response given at Fig. 17 clearly demonstrates temporal change of spectral components for 
acoustic signal generated from laser irradiated nucleus pulposus in vitro when optical fiber 
was moved forward in the intervertebral disc (similar to shown at Fig. 1). 
 

 
Fig. 17. The fragment of spectrogram (a) ant temporal structure of single pulse (b) of 
acoustic response generated from laser irradiated nucleus pulposus in vitro. 

As one can see, the acoustic response in this case has the form of short, intense and broadband 
(from 0 to 10 kHz) pulses of about 10 ms in duration combined into the series of pulses 
generated with frequency of 40 Hz. Fig. 17b shows that the amplitude of single pulse is an 
order of amplitude higher than the background acoustic noise. The most of acoustic power is 
concentrated in such pulses. The broad spectrum of acoustic pulses and their low duration 
indicate to shock-type of generated acoustic waves. The acoustic noise has broad spectral 
maxima in the following spectral intervals: 600 – 700 Hz, 1 - 2 kHz and nearby 10 kHz.  
Appearance of these bands are caused by the dynamics of vapor-gas mixture and are 
associated with acoustic resonances of the system. Notice that laser-induced formation of 
channels in degenerated spinal discs in vitro has been accompanied by 4 Hz in frequency 
strong visual vibrations of needle with laser fiber.  
Generation of such a strong acoustic vibrations is caused in our opinion by contact of 
overheated (up to >1000 ºС (Yusupov et al., 2011a)) fiber tip with water and water-saturated 
tissue of spinal disc. Such contact can result in explosive boiling of water solution nearby the 
fiber tip and, also, in burning of collagen in cartilage tissues. Intense hydrodynamic 
processes can take place nearby optical fiber tip, which are caused by fast heating of water 
and tissue, by generation and collapse of vapor-gas bubbles (Chudnovskii et al., 2010a, 
2010b; Leighton, 1994). As a result, the free space of disc or bone is filled by liquid saturated 
by vapor-gas bubbles. Resonance vibrations are excited, since both disc and bone are quite 
good acoustic resonators. These vibrations give rise to low-frequency modulation of acoustic 
noise (Fig. 16) and to quasi-periodic generation of short intense pulses (Fig. 17) 
(Chudnovskii et al., 2010a). The acousto- mechanic shock-type processes in resonance 
conditions results in mixing and transport of gas-saturated degenerated tissue in the space 
of defect (Chudnovskii et al., 2010b). These processes destroy hernia and decrease its density 
(Fig. 2b), thus lowering the pressure to nervous roots. Another important impact of such 
processes is the regeneration of disc tissues through the effects of mechanobiology 
(Buschmann et al., 1995; Bagratashvili et al., 2006). 
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6. Formation of filaments 
 In this division we will show that existence of strongly absorbed agents (in a form of Ag 
nanoparticles, in particular)  in laser irradiated water nearby optical fiber tip can result in 
appearance of filamentary structures of these agents (Yusupov et al., 2011b). Medium power 
(0.3 – 8.0 W) 0.97 µm in wavelength laser irradiation of water with added Ag nanoparticles 
(in the form of Ag-albumin complexes) through 400 µm optical fiber stimulates self-
organization of filaments of Ag nanoparticles for a few minutes. These filaments represent 
themselves long (up to 14 cm) liquid gradient fibers with unexpectedly thin (10 – 80 μm) 
core diameter. They are stable in the course of laser irradiation, being destroyed after laser 
radiation off. Such effect of filaments of Ag nanoparticles self-organization is rationalized by 
the peculiarities of laser-induced hydrodynamic processes developed in water in presence of 
laser light and by formation of liquid fibers. 
Fiber laser radiation (LS-0,97 IRE-Polus, Russia) 0-10 W in output and 0.97 µm in wavelength 
was delivered into water-filled plastic cell through 400 µm transport silica optical fiber, which 
was placed horizontally in the cell. Low intensity (up to 1 mW) green pilot beam from the built 
in diode laser was used to highlight the 0.97 µm laser irradiated zone in the cell. The cell was 
placed at the sample compartment of optical microscope (MC300, MICROS, Austria) equipped 
with color digital video-camera (Vision). Spectroscopic studies were performed with fiber-
optic spectrum analyzer (USB4000, Ocean Optics) and UV/vis absorption spectrometer (Cary 
50, Varian). To measure the refraction index of collargol we have applied the fiber-optic 
reflectometer FOR-11 (LaserChem, Russia), which provides 10-4 precision of refraction index 
measurements at 1256 nm wavelength. Cleavage of transport optical fiber has been always 
produced just before each experiment. Ten minutes later (to provide reasonable attenuation of 
hydrodynamic motions in the cell) the drop (0.01–1 ml in volume) of brown colored collargol 
(complex of 25 nm in size Ag nanoparticles with albumin) has been smoothly introduced into 
the water cell 0.5-10 mm aside from the optical fiber tip. 
Our in situ optical microscopic studies of laser-induced filament formation were 
accomplished in two different modes: 1) in transmission mode, using illumination with 
white light from microscope lamp; 2) in scattering mode, using illumination with green light 
of pilot laser beam through the same transport fiber. 
Experiments show that 0.97 µm fiber laser irradiation of water in the cell with introduced 
collargol drop causes (in some period of time from seconds to minutes) formation of thin 
and long quite homogenous filaments, growing along the axis of 0.97 µm laser beam in 
water. These filaments are brown colored (that gives the evidence of enhanced Ag 
nanoparticles concentration in filament) and can be seen even with unaided eye. 
Fig. 18 demonstrates the microscope image (in transmission mode) of one of such filaments. 
This filament is located along the axis of output laser beam and is about 17 mm in length. 
The measured profile of optical density of this filament is triangular in its shape with about 
the same widths along filament (determined at half-maximum) of ~200 μm. 
 

 
Fig. 18. Micro-image (in transmission mode) of filament of Ag nanoparticles fabricated in 
water nearby optical fiber tip at 2.5 W of laser power (Yusupov et al, 2011b). 
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Fig. 19a demonstrates the micro-image of another laser fabricated filament in scattering 
mode. Intensity of light scattered from this filament decreases gradually with the distance 
from fiber tip. Attenuation of green light in this case is caused by absorption and scattering 
of green light in the course of its propagation through the filament. To reveal the 
peculiarities of filament (given at Fig. 19a) we have performed the following processing of 
its microscope image: all vertical profiles of image were normalized to local maximum (Fig. 
19c); the microscope image was represented in shades of gray (Fig. 19b). As it follows from 
figures 19b and 19c the length of given filament is about 6 mm, its average width is about 40 
μm, and scattering intensity decreases rapidly with the distance from filament axis. Notice 
that vertical profiles of all fabricated filaments (in both transmission and scattering modes) 
are almost triangular with a sharp top. It was also established that the end of filament has 
always a needle-like shape and, also, the width of filament obtained in transmission mode 
measurements exceeds 3-5 times that obtained in scattering mode. 
 

 
Fig. 19. a - Microscopic picture of filament (in scattering mode) of Ag nanoparticles 
fabricated in water nearby optical fiber tip at 0.4 W of laser power. b - Image of this filament 
represented in shades of gray after processing of (see text) of Fig. 19a. c - Normalized 
vertical profiles of image given at Fig. 19b. (Yusupov et al, 2011b).  
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It is of importance that filaments of Ag nanoparticles have been formed in our experiments 
only in the case of existence of initial collargol concentration gradient in laser irradiated 
water (when collargol drop was introduced initially into water aside from fiber tip). When 
collargol drop was premixed in water cell before laser irradiation, formation of filaments has 
never been observed (at any collargol concentrations in the cell and at any laser powers and 
dozes). 
The initial stage of filament self-organization process can be clearly seen in scattering mode 
(Fig. 4). Some visible hydrodynamic flows take place nearby the fiber tip when laser power 
is on. Such flows result in intrusion of collargol from neighboring area into the area in front 
of the fiber tip. The slanting filament structure is clearly seen at Fig. 4. One can also see here 
the initial process of new intrusion formation (outlined with dashed line). The rate of rise-up 
front of a given intrusion (which is about 150 μm in average thickness) is found to be 
described be exponential low (1): at 1 mm from laser fiber tip V= 1.5· 10-2 cm/s, while at 2 
mm from laser fiber tip V falls down to 3· 10-3cm/s. 
We revealed that filaments of Ag nanoparticles self-organized in the course of 0.97 µm laser 
irradiation can exist in the cell (in the presence of laser beam and with no external 
mechanical distortions of liquid in the cell) for quite a long period of time. We have 
supported such filaments for tens of minutes. Notice that both rectilinear and curved 
filaments were self-organized in our experiments. 
After 0.97 µm laser radiation being off, the filaments of Ag nanoparticles have been 
completely destroyed for 10 – 30 s period of time. Notice that time Δt of diffusion blooming 
of filament by value, estimated by formula 
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where D – is diffusion coefficient of nanoparticle; k= 1.38· 10-23 J/K – Boltzmann constant; 
T(K) – absolute temperature; μ = 1,002· 10-3 (N· s/m2) – dynamic viscosity of water; d=25 
nm Ag nanoparticle diameter) gives Δt =25 s for  =100 μm. 
External mechanical distortions of filament of Ag nanoparticles results in its destruction. 
However after mechanical distortion being off, the filament can be renewed completely in 
presence of 0.97 µm laser radiation. Fig. 20 shows the dynamic of such filament renovation 
after the distortion of self-organized filament (produced by its rapid crossing withthin a 
metal needle). As one can see from Fig. 20, complete renewal took place for quite a short 
period of time (~ 20 s). 
Our experiments have shown that there is some range of 0.97 µm laser powers for which the 
effect of laser-induced filament self-organization takes place and is, also, stable and 
reproducible. At laser powers higher than 8 W we have newer observed filament formation. 
At 0.2-0.5 W laser power filaments have been formed but have been unstable. The most 
stable and long-living filaments were observed in 0.5-3 W laser power range. At laser power 
less than 0.2 W we have never observed such filament formation. The instability of filaments 
and even their absence at high laser powers is caused by intense laser-induced 
hydrodynamic processes nearby the fiber tip. Our experiments show that the fiber tip 
surface is gradually covered by a deposit, which absorbs laser radiation quite well. The wide 
absorption band of deposit observed at fiber tip can be caused by island film of Ag 
nanoparticles, and, possibly, by elementary carbon absorption (deposited at fiber tip due to 
albumin thermo-decomposition). As a result of such deposits, the fiber tip becomes an  
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Digits show the period of time from the beginning of filament destruction (Yusupov et al., 2011b). 

Fig. 20. Renewal of destroyed filament of Ag nanoparticles in water nearby the tip of optical fiber.  

intense heat source. That causes explosive water boiling, intense formation of micro-
bubbles, moving rapidly away from fiber tip to liquid (see for example Fig. 1,b) and 
destroying filament. 
We rationalize the observed effect of laser-induced self-organization of filaments from Ag 
nanoparticles by following mechanisms. Initially (Fig. 21a), laser light absorption by water 
(the absorption coefficient in water at 0.97 µm is about 0.5 cm-1) causes its heating with the 
2-10ºС/s rate. Besides, the intense transfer of impulse to water takes place in this case. As a 
result, the closed axis-symmetric liquid flows are developed being directed from fiber tip. 
These flows promote Ag nanoparticles intrusion into the laser beam nearby the fiber tip 
(Fig. 21b). Such intrusions are clearly seen in scattered green laser light (Fig. 4). 
Another factor dominates at the second stage of filament self-organization. The refractive 
index for collargol nc is higher than that for clean water nw. The value of nc-nw = 0.0044 at 
wavelength λ=1256 nm was directly measured in our experiments using fiber-optic 
densitometer. Due to the effect of total internal reflection laser light is concentrated inside 
intrusion which work in fact as a liquid optical fiber. Channeling of laser light inside 
intrusion with Ag nanoparticles results in deeper propagation of laser light into water. Light 
pressure promotes faster movement of intrusion front giving rise to filament (Fig. 21c). As it 
was shown in (Brasselet et al., 2008), for example, laser light pressure is also able to force 
through the boundary between two unmixed liquids and to form thin channel of one liquid 
inside another one, thus forming liquid optical fiber with gradient core. Thus, the image of 
filament in transmission mode shows optical density of Ag nanoparticles. At the same time 
the image of filament in scattering mode clearly demonstrate channeling effect in fabricated 
filament which in fact is a liquid gradient fiber. Such liquid gradient fiber provides also 
effective channeling of 970nm laser beam, thus promoting filament elongation and spatial 
stability. 
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a. Formation of water flow nearby the fiber tip. 
b. Formation of Ag nanoparticles intrusions. 
c. Fabrication of filaments from Ag nanoparticles. 
d. Intense formation of micro-bubbles, hampering filament formation at high laser power. 

Fig. 21. To the explanation of the effect of laser-induced formation of filaments of Ag 
nanoparticles (Yusupov et al., 2011b). 

Laser induced formation of 10-50 μm in thickness and up to few millimeters micro-bubble 
streams (Fig. 11) can also promote the filaments fabrication observed in our experiments. It 
is clear, however, that too intense chaotic formation of micro-bubble streams observed at 
high laser power can hamper filament fabrication (Fig. 21d). 
We believe that such filaments of nanoparticles can be developed not only in water media 
but, also, in other fluids, with other laser wavelength and particles types. The indispensable 
conditions in this case are the availability of sufficient level of laser light absorption in 
irradiated medium nearby fiber tip and possibility of liquid fiber formation. 

7. Conclusion 
Hydrodynamic effects induced by a medium power (1–5 W) laser radiation in the vicinity of 
the heated fiber tip surface in water and in water-saturated tissues are considered. A 
threshold character of the dynamics of liquid is demonstrated. At a relatively low laser 
power (about 1 W), the slow formation of vapor-gas bubbles with sizes of hundreds of 
microns are observed at the optical fiber tip surface. The bubbles can be attached to the tip 
surface in the course of laser radiation. At higher laser power increases, effective 
hydrodynamic processes related to the explosive boiling in the vicinity of the overheated 
fiber tip surface take place. The resulting bubbles with sizes ranging from a few microns to 
several tens of microns provide the motion of liquid. The estimated velocities of bubbles in 
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the vicinity of the fiber tip surface can be as high as 100 mm/s. Generation of bubbles in the 
capillary leads to the circulating water flows with periods ranging from 0.2 to 1 s. Such 
circulation intensity increases with the laser power. For the laser radiation with a 
wavelength of 0.97 μm, we observe such effects only for the blackened fiber tip surface, 
which serves as a local heat source. At a laser power of less than 3 W, stable bubble 
microjets, which consist of the bubbles (ranging from several to ten microns) can be 
generated in the vicinity of the blackened tip surface.  
Laser-induced hydrodynamic effects in water and bio-tissues can cause the significant 
degradation of the fiber tip. Cavitation collapse of bubbles in liquid in the vicinity of fiber 
tip surface gives rise to the high-speed cumulative microjets which can destroy the solid 
surface. This effect leads to multiple cracks on the film and the formation of the porous 
structure, formation of supercritical water and even generation of diamonds nano-crystal.  
Laser-induced hydrodynamics processes in water and water-saturated bio-tissues are 
accompanied by generation of intense acoustic waves in resonance conditions, even of 
shock-type waves. The acousto-mechanic processes results in mixing and transport of gas-
saturated degenerated tissue in the space of defect. 
We found that medium power  (0.3- 8 W) 0.97 µm in wavelength laser irradiation of water 
with added Ag nanoparticles (in the form of Ag-albumin complexes) through 400μm 
optical fiber stimulates self-organization of unexpectedly thin (10-80 µm) and lengthy (up 
to 14 cm) filaments of Ag nanoparticles in the form of liquid gradient fibers. These 
filaments in water are stable in the course of laser irradiation being destroyed after laser 
radiation off. Such effect of filaments of Ag nanoparticles self-organization is rationalized 
by the peculiarities of laser-induced hydrodynamic processes developed in water in 
presence of laser light. 
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1. Introduction 
Estimates of the worldwide incidence and mortality from 27 cancers in 2008 have been 
prepared for 182 countries by the International Agency for Research on Cancer (Ferlay et al., 
2010). Overall, an estimated 12.7 million new cancer cases and 7.6 million cancer deaths 
occur in 2008, with 56% of new cancer cases and 63% of the cancer deaths occurring in the 
less developed regions of the world. The most commonly diagnosed cancers worldwide are 
lung (1.61 million, 12.7% of the total), breast (1.38 million, 10.9%) and colorectal cancers (1.23 
million, 9.7%). Cancer is neither rare anywhere in the world, nor mainly confined to high-
resource countries. Many cancer subjects die from cancer as a result of organ failure due to 
“metastasis” (Geiger & Peeper, 2009), thus indicating that medical control of tumor 
metastasis leads to a marked improvement in cancer prognosis. 
The acquisition of the metastatic phenotype is not simply the result of oncogene mutations, 
but instead is achieved through an interstitial stepwise selection process (Mueller & Fusenig, 
2004). The dissociation and migration of cancer cells, together with a breakdown of 
basement membranes between the parenchyme and stroma, are a prerequisite for tumor 
invasion. The next sequential events involved in cancer metastasis include the following: (i) 
penetration of cancer cells to adjacent vessels (i.e., intravasation); (ii) suppressed anoikis (i.e., 
suspension-induced apoptosis) of cancer cells in blood flow; and (iii) an extravascular 
migration and re-growth of metastatic cells in the secondary organ. For an establishment of 
anti-metastasis therapy, it is important to elucidate the basic mechanism(s) whereby tumor 
metastasis is achieved through a molecular event(s). 
Hepatocyte growth factor (HGF) was discovered and cloned as a potent mitogen of rat 
hepatocytes in a primary culture system (Nakamura et al., 1984, 1989; Nakamura, 1991). 
Beyond its name, HGF is now recognized as an essential organotrophic regulator in almost 
all tissues (Nakamura, 1991; Rubin et al., 1993; Zarnegar & Michalopoulos, 1995; Birchmeier 
& Gherardi, 1998; Nakamura & Mizuno, 2010). Actually, HGF induces mitogenic, motogenic 
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and morphogenic activities in various types of cells via its receptor, MET (Bottaro et al., 1991; 
Higuchi et al., 1992). HGF is required for organogenesis in an embryonic stage and for tissue 
repair in adulthood during various diseases (Nakamura, 1991; Birchmeier & Gherardi, 1998; 
Nakamura & Mizuno, 2010). Several lines of in vitro studies indicate that HGF stimulates 
scattering and migration of cancer cells (Matsumoto et al., 1994, 1996a; Nakamura et al., 
1997). In malignant tumors, HGF is expressed by stromal cells, such as fibroblasts, while 
MET is over-expressed by cancer cells, thus suggesting in the mid-1990s that a paracrine 
signal from HGF-producing stroma cells to carcinomas may cause malignant behaviors, 
such as invasion and metastasis (Matsumoto et al., 1996b). 
NK4 is an intra-molecular fragment of HGF, which is generated by a chemical cleavage of 
mature form HGF (Date et al., 1997; Nakamura et al., 2010). NK4 includes an N-terminal 
hairpin domain and 4-kringle domains (K1-K4) of HGF α-chain, which binds to MET. Thus, 
NK4 antagonizes HGF activities as a competitive inhibitor. Using NK4 as an HGF-
antagonist in rodents with malignant tumors, we have accumulated evidence showing that 
endogenous HGF-MET cascade is a key conductor for tumor metastasis, while inhibition of 
MET signals leads to the arrests of tumor growth. Unexpectedly, NK4 prohibits tumor 
angiogenesis through a MET-independent mechanism. This review focuses on the roles of 
HGF in cancer biology and pathology. We also emphasize the effectiveness of NK4 in 
experimental cancer models where NK4 is supplemented via a “hydrodynamics-based” 
gene therapy. 

2. Effects of HGF on intra-tumor cells during cancer progression 
In the mid-1980s, MET was identified as a mutated oncogene from carcinogen-induced 
osteosarcoma cells (MNNG-HOS) that transform NIH3T3 fibroblasts (Cooper et al., 1984). 
MET-encoding protein has a tyrosine kinase activity (Dean et al., 1985), suggesting that MET 
may be an orphan receptor of growth factors. In the early 1990s, MET-coding product was 
demonstrated to be a high-affinity receptor for HGF (Bottaro et al., 1991; Higuchi et al., 1992). 
Scatter factor (SF) stimulates tumor cell movement, as its name indicates, and is shown 
molecularly identical to HGF (Konishi et al., 1991; Weidner et al., 1991). HGF has several 
activities required for tumor cell invasion and metastasis, as described below. In this section, 
we summarize the direct effects of HGF on intra-tumor cells, including carcinoma, and on 
vascular and lymphatic cells prior to discussion of the contribution of HGF-MET cascades 
during tumor malignancy. 

2.1 Scattering and migration of tumor cells 
Initial events for the metastatic spread of tumors involve loss of cell-cell contact within the 
primary tumor mass. The integrity and morphology of epithelial tumor cell colonies are 
maintained by cell-cell contact mediated by cadherins and its associated intracellular catenin 
molecules. Cancer cells must lose their tight cell-to-cell contact by down-regulation of 
cadherin-cadherin complex during invasion into adjacent tissues. HGF induces scattering (i.e., 
dispersion of cluster cells into single cells) via an endocytosis of E-cadherin from cell surface to 
cytoplasma (Watabe et al., 1993; Miura et al., 2001). During cell migration, HGF activates the 
Ras-Rab5 pathway for endocytosis of cadherins (Kimura et al., 2006), which triggers nuclear 
localization of β-catenin, a transcription factor of genes responsible for cell motility (Hiscox & 
Jiang, 1999). Stimulation of an Rho small G protein cascade and activation of cdc42, rac and 
PAK by HGF leads to the disassembly of stress fiber or focal adhesions, while lamellipodia 
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formation and cell spreading are enhanced by HGF (Royal et al., 2000). These changes confer a 
down-stream mechanism of MET-mediated cancer invasion. 

2.2 Breakdown of basement membranes 
During cancer invasion, tumor cells must move across a basement membrane between 
epithelium and lamina propria (i.e., sub-epithelium). HGF stimulates motility in a biphasic 
process: cells spread rapidly and form focal adhesions, and then they disassemble these 
condensations, followed by increased cell locomotion. In the early phase (i.e., within a few 
minutes post-stimulation), HGF induces phosphorylation of focal adhesion kinase (FAK) 
together with a tight bridge between the extra-cellular matrix (ECM) and integrins of cancer 
cells (Matsumoto et al., 1994; Parr et al., 2001). In the later phase, HGF-stimulated cancer cells 
invade into matrix-based gels in vitro, or across basement membrane ECM in vivo 
(Nakamura et al., 1997). In this process, HGF up-regulates several types of matrix 
metalloproteinase (MMP), such as MMP-1, -2, and -9, through activation of Ets, a 
transcriptional factor of MMPs (Li et al., 1998; Nagakawa et al., 2000; Jiang et al., 2001). 
Considering that MMP-inhibitors diminish HGF-mediated migration, the induction of MMP 
through HGF-Ets cascade is essential for tumor invasion into adjacent normal tissues. 

2.3 Endothelial attachment and extravasation of cancer cells 
Needless to say, tumor angiogenesis as well as lymphatic vessel formation are important for 
delivery of cancer cells from the primary tumor to secondary organs. HGF enhances 
angiogenesis via induction of the proliferation and morphogenesis of endothelial cells (EC) 
(Bussolino et al., 1992; Nakamura et al., 1996). Actually, HGF supplementation leads to the 
enhancement of tumor angiogenesis in vivo (Laterra et al., 1997). Recent studies delineated 
the capacity of HGF to induce lymphatic morphogenesis (Kajiya et al., 2005; Saito et al., 
2006). Thus, HGF is considered to facilitate cancer metastasis via neo-induction of vascular 
or lymphatic vessel beds. HGF has a direct effect on EC for enhancing tight adhesion of 
tumor cells on endothelium via FAK phosphorylation (Kubota et al., 2009a). Furthermore, 
HGF decreases endothelial occludin, a cell-cell adhesion molecule (Jiang et al., 1999a). Under 
such a loss of EC-EC integrity, HGF decreases the trans-endothelial resistance of tumor 
vessels and enhances cancer invasion across an EC barrier (i.e., intravasation in primary 
tumors and extravasation in metastatic organs) (Fig. 1). 

2.4 Prevention of cancer cell anoikis 
Anoikis, also known as suspension-induced apoptosis, is a term used to describe 
programmed cell death (apoptosis) of epithelial cells induced by loss of matrix attachment. 
In addition to gaining functions of invasion and angiogenesis, cell resistance to anoikis also 
appears to play an important role in tumor progression and metastasis as tumor cells lose 
matrix attachment during metastasis. However, it is unknown how cancer cells escape from 
anoikis-like death during metastasis. It was demonstrated, in a non-adherent culture 
models, that HGF is a key molecule inhibiting suspension-induced anoikis, and this effect is 
mediated via a crosstalk that is, in turn, mediated by phosphatidyl-inositol 3-kinase (PI-3K) 
and extracellular signal-regulated kinase (ERK)-1/2 (Zeng et al., 2002; Kanayama et al., 2008). 
A recent report described that tetraspanin CD151-knockdown abolishes preventive effect of 
HGF on tumor anoikis (Franco et al., 2010). Thus, it is likely that cell surface tetraspanins are 
important for signaling complexes between MET and integrin-β4, a known amplifier of 
HGF-mediated cell survival. 
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Fig. 1. Various effect of HGF on cancer cells and endothelial cells (EC) during tumor 
progression. For example, sequential events during the lung metastasis of hepatic carcinoma 
are summarized as follows: (A) dissociation and scattering of hepatocellular cancer cells 
through an HGF-induced endocytosis of cadherins; (B) tumor migration into stromal areas 
across the basement membrane (BM) is mediated via MMP-dependent matrix degradation 
and Rho-dependent cell movement; (C) invasion of tumor cells into neighboring vessels (i.e., 
intravasation) where the tight junction between ECs is lost by HGF-MET signaling; (D) 
inhibition of tumor cell anoikisis by MET-AKT cascades during blood flow, and out-flux of 
tumor cells across vessel walls (i.e., extravasation); and (E) in the lung, HGF supports 
growth of metastatic nodules via providing vascular beds as an angiogenic factor. 

Overall, HGF is shown to take direct action on carcinoma cells: (i) cell spreading via an 
endocytosis of cadherins; (ii) enhancement of invasion across basement membranes via Rho-
dependent and MMP-dependent pathways; and (iii) anti-anoikis activity during blood 
circulation. Toward tumor vessels, HGF elicits vascular and lymphatic EC proliferation and 
branching angiogenesis, while intravasation and extravasation are achieved through HGF-
induced reduction of EC-EC integrity. These HGF-MET-mediated biological functions seem 
advantageous for invasion and metastasis of malignant tumors, including carcinoma and 
sarcoma (Fig. 1). 
[Note] Long-term administration of recombinant HGF does not elicit tumor formation in 
healthy animals, and this result supports a rationale of HGF supplement therapy for treating 
chronic organ diseases, such as liver cirrhosis, at least in cancer-free patients. 

3. Regulation of HGF production by cancer cells 
Several lines of histological evidence indicate that HGF is produced in stroma cells, such as 
fibroblasts, vascular EC and smooth muscle cells in tumor tissues. In contrast, MET is over-
expressed mainly by tumor cells, particular near invasive areas, implying a possible 
paracrine signal from HGF-producing stroma cells to MET-expressing carcinoma cells 
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(Matsumoto et al., 1996b). Herein, we will discuss the molecular basis whereby stromal HGF 
production is up-regulated by tumor cells during cancer invasion and metastasis. 

3.1 Stroma as a microenvironment to determine behaviors of tumors 
The important roles of stroma during tumor progression are demonstrated through several 
independent studies. Carcinoma-associated fibroblasts, but not normal fibroblasts, stimulate 
tumor progression of initiated non-tumorigenic epithelial cells both in an in vivo tissue 
recombination and in an in vitro co-culture system (Olumi et al., 1999). Transforming growth 
factor (TGF)-β signaling is critical for down-regulating HGF production (Matsumoto et al., 
1992). Of note, an inactivation of TGF-β type II receptor gene in stromal fibroblasts leads to 
the onset of epithelial growth and invasion (Bhowmick et al., 2004). In this process, 
activation of paracrine HGF is a key mechanism for stimulation of epithelial proliferation 
(Bhowmick et al., 2004). Thus, the suppression of HGF production by TGF-β seems to be 
important for an escape from cancer metastasis (Matsumoto & Nakamura, 2006).  

3.2 Regulation of HGF production in stroma by tumor cells 
As repeated, a major source of HGF in tumors is stromal cells (including fibroblasts, 
endothelium, macrophages and neutrophils) (Wislez et al., 2003; Matsumoto & Nakamura, 
2006; Grugan et al., 2010). Thus, how stromal HGF is up-regulated during tumor progression 
should be discussed. There is now ample evidence that numerous types of carcinoma cells 
secrete soluble factors that induce HGF production in stromal cells (i.e., HGF-inducers). For 
example, conditioned medium obtained from breast cancer cells enhances HGF production 
in fibroblasts, along with a raise in prostaglandin-E2 (Matsumoto-Taniura et al., 1999). Of 
note, suppression of prostaglandin-E2 production by indomethacin leads to down-
regulation of stromal HGF production and suppression of tumor migration in vitro 
(Matsumoto-Taniura et al., 1999), indicating that cancer-derived prostaglandins are 
important for up-regulating HGF in stromal cells (Matsumoto-Taniura et al., 1999; Pai et al., 
2003). Other carcinoma-derived HGF-inducers are interleukin-1β (IL-1β), basic fibroblast 
growth factor (b-FGF), platelet-derived growth factor (PDGF), and TGF-α (Hasina et al., 
1999; Matsumoto & Nakamura, 2003). These results indicate a crosstalk between carcinoma 
and stroma, mediated via a paracrine loop of HGF-inducers produced by carcinoma and 
HGF secreted from stroma cells, such as fibroblasts (Matsumoto et al., 1996a). 

3.3 Inflammation-mediated HGF up-regulation mechanism 
In addition to stromal fibroblasts, tumor-associated macrophages (TAM) are known to 
highly produce HGF during non-small lung cancer invasion (Wang et al., 2011). It is 
reported that TAM isolated from 98 primary lung cancer tissues show the higher production 
of HGF, along with the concomitant increases in urokinase-type plasmin activator (uPA), 
cyclooxygenase-2 (Cox2) and MMP-9 (Wang et al., 2011). Anti-MMP-9 antibody largely 
diminishes TAM-induced invasion, while Cox2 and uPA are critical for HGF production 
and activation, respectively, suggesting that Cox2-uPA-HGF-MMP cascades in TAM 
participate in non-small lung cancer invasion. Likewise, HGF production is enhanced by 
neutrophils infiltrating bronchiolo-alveolar subtype pulmonary adenocarcinoma (Wislez et 
al., 2003). 
Clinical studies demonstrate that serum levels of HGF are elevated in patients with 
recurrent malignant tumors (Wu et al., 1998; Osada et al., 2008), thus suggesting an 
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endocrine mechanism of the HGF delivery system. In this regard, it is known that peripheral 
blood monocytes produce HGF, contributing to the increase in blood HGF levels via an 
endocrine mechanism (Beppu et al., 2001). Overall, production of HGF by inflammatory cells 
is involved in carcinoma invasion and metastasis (i.e., local system), while peripheral blood 
monocytes seem to prevent tumor cell anoikis during metastasis, possibly by a release of 
HGF into blood (i.e., systemic system). 

4. Structure and activity of NK4 as HGF antagonist 
HGF is a stromal-derived paracrine factor that has stimulated cancer invasion at least in vitro 
(Matsumoto et al., 1994; Matsumoto et al., 1996a; Nakamura et al., 1997). Clinical studies 
suggest that the degree of serum HGF and Met expressions in cancer tissues appears to 
correlate with a given prognosis (Yoshinaga et al., 1993; Osada et al., 2008). Thus, it is 
hypothesized that in vivo inhibition of HGF-MET signaling may be a reasonable strategy to 
prohibit cancer metastasis. To test this hypothesis, we prepared NK4 as an intra-molecular 
fragment of HGF via a chemical digestive process (Date et al., 1997; Matsumoto et al., 1998). 
As expected, NK4 bounded to MET and inhibited HGF-MET coupling as a competitive 
inhibitor. An additional “unexpected” value was that NK4 inhibited tumor angiogenesis via 
a MET-independent pathway. This section focuses on the biological value of NK4 as an 
HGF-antagonist and as an angiogenesis inhibitor. 

4.1 Structure and anti-invasive function of NK4 
NK4 was initially purified as a fragment from elastase-digested samples of recombinant 
human HGF (Date et al., 1997). The N-terminal amino acid sequence of NK4 and of the 
remnant fragment, assumed to be composed of an HGF β-chain, revealed that NK4 is 
cleaved between the 478th valine and the 479th asparagine. The N-terminal amino acid 
sequence of NK4 revealed that the N-terminal structure of NK4 is the same as undigested 
HGF (i.e., 32nd pyroglutamate), indicating that NK4 is composed of the N-terminal 447 
amino acids of the α-chain of HGF and contains the N-terminal hairpin domain and four 
kringle domains (thus designated NK4) (Fig. 2A). The binding domains that are 
responsible for high-affinity binding to MET are the N-terminal hairpin and the first 
kringle domains in NK4 (and HGF). MET tyrosine phosphorylation occurs in A549 lung 
carcinoma within 10 minutes after HGF addition, while NK4 inhibits the HGF-mediated 
MET activation (Fig. 2B). Actually, NK4 functions as an HGF-antagonist: HGF induces 
invasion and migration of the gallbladder and bile duct carcinoma cells in ECM-based 
gels, while NK4 inhibits HGF-induced invasion in a dose-dependent manner (Fig. 2C) 
(Date et al., 1998). These anti-invasive effects of NK4 are seen in distinct types of cancer 
cells (Hiscox et al., 2000; Maehara et al., 2001; Parr et al., 2001), strengthening the common 
role of NK4 during cancer migration. 

4.2 Perlecan-dependent anti-angiogenic mechanism by NK4 
Vascular EC highly express MET, while HGF stimulates mitogenic and morphogenic 
activities in EC (Nakamura et al., 1996), thus suggesting that NK4 could inhibit HGF-
induced angiogenesis. Actually, NK4 potently inhibited the HGF-mediated proliferation of 
EC in vitro (Jiang et al., 1999b). Strikingly, NK4 also inhibited microvascular EC proliferation 
and migration, induced by other angiogenic factors, such as b-FGF and vascular endothelial  
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Fig. 2. Preparation of NK4 as an HGF-antagonist and its inhibitory effects on tumor invasion 
in vitro. (A) Preparation and structure of NK4. NK4 is generated via a cleavage of HGF 
between 478th Val and 479th Asn. (B) Inhibition of HGF-mediated MET tyrosine 
phosphorylation by NK4 in lung carcinoma cells. (C) Biological activity of NK4. Cancer cell 
invasion (upper chamber) is induced across a Matrigel layer when fibroblasts (FB) are 
placed on a lower chamber. In this co-culture system, NK4 inhibits FB-induced tumor cell 
invasion in a dose-dependent manner. 

growth factor (VEGF) (Fig. 3A) (Kuba et al., 2000). When a pellet containing b-FGF was 
implanted under the rabbit cornea, angiogenesis was rapidly induced. In this model, NK4 
inhibited b-FGF-induced angiogenesis (Fig. 3B). In vitro models of EC proliferation, HGF 
and VEGF phosphorylate MET and KDR/VEGF receptor, respectively, whereas NK4 
inhibits HGF-induced MET tyrosine phosphorylation, but not VEGF-induced KDR 
phosphorylation (Kuba et al., 2000). Nevertheless, NK4 inhibited the VEGF-mediated EC 
proliferation without modification of VEGF-mediated ERK1/2 (p44/42 mitogen-activated 
protein kinase) activation. These results suggest the presence of another mechanism 
whereby NK4 inhibits VEGF- and b-FGF-mediated angiogenesis. 
The fibronectin-integrin signal is essential for the spreading and proliferation of EC. Based 
on this background, we demonstrated that NK4-mediated growth arrest of EC is due to a 
loss of the fibronectin-integrin signal. Affinity purification with NK4-immobilized beads 
revealed that NK4 binds to perlecan (Sakai et al., 2009). Consistent with this result, NK4 was 
co-localized with perlecan in EC. Perlecan is a multi-domain heparan sulfate proteoglycan 
that interacts with basement membrane components such as fibronectin. Of interest, 
knockdown of perlecan expression by siRNA diminished the fibronectin assembly and EC 
spreading, indicating an essential role of fibronectin-perlecan interaction during EC 
movement. A recent report described that NK4-perlecan interaction suppressed the normal 
assembly of fibronectin by perlecan (Sakai et al., 2009). As a result, FAK activation became 
faint in EC after NK4 treatment. Under such a loss of fibronectin-integrin signaling by NK4, 
EC growth and motility were suppressed, even in the presence of b-FGF or VEGF. This is 
the reason why NK4 arrests b-FGF- or VEGF-mediated angiogenesis (Fig. 3C). 
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Fig. 3. Anti-angiogenic effects of NK4 via a perlecan-dependent mechanism. (A) NK4 
suppresses HGF-, b-FGF-, and VEGF-induced proliferation of EC in vitro (Kuba et al., 2000). 
(B) Inhibition of b-FGF-induced corneal neovascularization by NK4 treatment in rabbits. (C) 
Involvement of perlecan (PC) in NK4-mediated growth arrest of EC. Left: Cell surface PC is 
required for the binding of fibronectin and α5β1-integrin, leading to FAK phosphorylation 
and crosstalk of VEGF-VEGF receptor (KDR) signaling. Right: NK4 binds to PC, and then 
the binding of integrin to fibronectin is impaired. As a result, VEGF fails to elicit G1/S 
progression of EC in the presence of NK4 (Sakai et al., 2009). 

We have accumulated in vitro evidence showing that HGF-MET system may elicit cancer 
invasion via a paracrine loop of stroma-carcinoma interaction. This phenomenon is also 
demonstrated in vivo: anti-HGF antibody potently suppressed the tumor invasion in a 
mouse model of pancreas cancer (Tomiola et al., 2001). On the other hand, several 
investigators proposed, in the late-1990’s, a new concept that tumor angiogenesis inhibition 
leads to the arrest of cancer growth and metastasis (Yancopoulos et al., 1998). Inhibition of 
tumor angiogenesis leads to local hypoxia, and then apoptotic death of cancer cells is 
associated with the arrests of tumor growth and metastasis (i.e., cytostatic therapy). In this 
regard, NK4 also elicits an anti-angiogenic effect via perlecan-dependent mechanism. Thus, 
bi-functional properties of NK4 as an HGF antagonist and angiogenesis inhibitor raise a 
possibility that NK4 may prove therapeutic for cancer patients, as follows. 

5. Anti-cancer therapy using NK4 in animal models 
Carcinoma and sarcoma show malignant phenotypes prompted by a stroma-derived HGF-
MET signal at least in vitro. If NK4 could block MET signaling as an HGF-antagonist in vivo, 
supplemental therapy with NK4 would be a pathogenesis-based strategy to counteract 
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tumor invasion and metastasis. This hypothesis is widely demonstrated through extensive 
studies using tumor-bearing animals, as described below. 

5.1 First evidence of NK4 for inhibition of carcinoma progression in vivo 
HGF, or co-cultured fibroblasts, are known to induce invasion of gallbladder carcinoma cells 
(GB-b1) across Matri-gel basement membrane components (Li et al., 1998). NK4 
competitively inhibits the binding of HGF to MET on GB-d1 cells. As a result, NK4 
diminishes HGF-induced, or fibroblast-induced, motogenic activities (Date et al., 1998), thus 
suggesting that stroma-derived HGF is a key conductor for provoking tumor invasion. Such 
an important role of HGF was also demonstrated in vivo. Subcutaneous inoculations of 
human gallbladder carcinoma GB-d1 cells in nude mice allow for primary tumor growth 
and invasion to adjacent muscular tissues. Using this conceptual model, we provided the 
first evidence of NK4 as an anti-tumor drug (Date et al., 1998). Recombinant NK4 has 
inhibited the growth and muscular invasion in a mouse model of gallbladder carcinoma. 
Consistent with tumor growth arrest, apoptotic change becomes evident during NK4 
injections. Since HGF has an anti-apoptotic effect on cancer cells (Zeng et al., 2002), reverse 
of HGF-induced protection by NK4 may be one of the mechanisms whereby carcinoma 
growth can be suppressed during NK4 supplemental therapy. 

5.2 Inhibition of tumor angiogenesis by NK4 treatment 
In a culture of EC, NK4 produces anti-angiogenetic effects via a MET-independent pathway 
(Kuba et al., 2000; Nakabayashi et al., 2003). These effects are also observed in animal models 
of malignant tumors: administration of recombinant NK4 suppressed primary tumor 
growth, metastasis of Lewis lung carcinoma, and Jyg-MC(A) mammary carcinoma 
implanted into mice (Kuba et al., 2000), although neither HGF nor NK4 affected proliferation 
and survival of these tumor cells in vitro. NK4 treatment resulted in a remarkable decrease 
in microvessel density and an increase in apoptotic tumor cells in primary tumors, 
suggesting that the inhibition of tumor growth by NK4 may be achieved by the suppression 
of tumor angiogenesis (Kuba et al., 2000). The anti-angiogenic effects of NK4 are widely 
demonstrated in various types of cancers [see our review articles (Matsumoto & Nakamura, 
2005; Matsumoto et al., 2008a,b)]. Because the inhibition of angiogenesis by NK4 leads to 
tumor hypoxia, hypoxia-primed apoptosis may contribute to a reduction in tumor size 
during NK4 supplemental therapy. 

5.3 Delayed NK4 therapy for attenuation of end-stage pancreas carcinoma 
Anti-tumor effect of NK4 is also observed in a mouse model of advanced pancreas 
carcinoma (Tomioka et al., 2001). When NK4 treatment was initiated on day 10, a time when 
cancer cells were already invading surrounding tissues, NK4 potently inhibited the tumor 
growth, peritoneal dissemination, and ascites accumulation at 4 weeks after the inoculation. 
Such an anti-tumor effects of NK4 correlated with decreased vessel density in pancreatic 
tumors. In an end-stage of pancreas cancer, NK4 inhibited the malignant phenotypes, such 
as peritoneal dissemination, invasion of cancer cells into the peritoneal walls and ascites 
accumulation (Tomioka et al., 2001). As a result, NK4 prolonged the survival time of mice at 
an end-stage of cancer (Fig. 4). Because effective systemic therapy for pancreatic cancer is 
currently not available, and diagnosing pancreatic cancer in its early stages is difficult, the 
highly invasive and metastatic behaviors of pancreatic cancer lead to difficulty in attaining a  
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Fig. 4. Anti-tumor effects of NK4 on advanced pancreas cancer in mice. (A) Schedules for 
NK4 treatment of mice with pancreatic cancer. NK4 was injected into mice between 3 and 28 
days after the inoculation of human pancreatic cancer cells (SUIT-2). (B) Inhibition of 
primary tumor growth by NK4. Photographs show appearance of the primary pancreatic 
cancer. (C) Histological analysis of the effect of NK4-treatment on tumor angiogenesis (left) 
and apoptosis (right). NK4-treatment reduced the number of vessel numbers, while 
apoptotic death of cancers was enhanced by NK4. (D) Inhibitory effects of NK4 on 
peritoneal metastasis. Left: Typical macroscopic findings. Middle: Changes in the number of 
metstatic nodules. Right: Changes in the ascite volumes. (E) Prolonged survival of tumor-
bearing mice treated with NK4. 

long-term survival and a recurrence-free status. Targeting tumor angiogenesis and blockade 
of HGF-mediated invasion of cancer cells may prove to be potential therapy for patients 
with pancreatic cancer.  

5.4 Therapy combining NK4 with other treatments 
Anti-cancer chemotherapy is widely used for the suppression of malignant tumors with or 
without surgical treatment. Therapy regimens that combine anti-cancer chemo drugs and 
NK4 enhance their anti-tumor effect (Matsumoto et al., 2011). Irradiation therapy often 
enhances cancer metastasis, especially in cases of pancreatic carcinoma, and this is 
associated with the irradiation-induced up-regulation of HGF in fibroblasts (Qian et al., 
2003; Ohuchida et al., 2004). Thus, NK4 may overcome these irradiation-associated side 
effects. 
Epidermal growth factor receptor (EGFR) kinase inhibitors, such as Gefitinib, are used to 
treat non-small cell lung cancers that have activating mutations in the EGFR gene, but most 
of these tumors become resistant to EGFR-kinase inhibitors due to enhancement of HGF-
MET signals (Engelman et al., 2007; Yano et al., 2008; Okamoto et al., 2010). Thus, NK4 
treatment may reverse HGF-induced resistance to Gefitinib. 
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Recently, it was demonstrated that NK4-mediated tumor regression depends on the 
infiltration of cytotoxic T lymphocytes (Kubota et al., 2009b). Importantly, depletion of CD8+ 
cells markedly abrogated the anti-tumor activity of NK4 in a mouse model of colon cancer. 
NK4 enhances immune responses in dendritic cells in vitro. Thus, NK4 may also have utility 
for anti-tumor immunotherapy. 
There is now ample evidence that NK4 is useful for the inhibition of growth, invasion and 
metastasis in various types of tumors, such as gastric carcinoma (Hirao et al., 2002), pancreas 
cancer (Tomioka et al., 2001), prostate cancer (Davies et al., 2003), multiple myeloma (Du et 
al., 2007) and melanoma (Kishi et al., 2009) (Table-1). These results support our hypothesis 
that HGF is a key determinant of tumor malignancy (Matsumoto et al., 1996b). 
 
Tumor diseases NK4 therapy     Outcome Literature 
(Cell lines and treatment) 
 
 A. Digestive system: 
  Gastric carcinoma Adeno-NK4, ip  Inhibitions of growth Ueda K et al., 
    (TMK1 cells,   and metastasis,  Eur J Cancer  
     ip, Mouse)   Anti-angiogenesis, 40: 2135-2142 
   Reduced ascites  (2004) 
 
  Hepatic carcinoma Adeno-NK4, iv Inhibitions of growth, Son G et al., 
    (HUH7 cells,  Anti-angiogenesis, J Hepatol 45: 
     portal vein, Mouse)  Prolonged survival 688-695 (2006) 
 
  Gallbladder cancer NK4, sc   Inhibitions of growth Date K et al., 
    (GB-d1 cells,   and invasion  Oncogene 17: 
     sc, Mouse)     3045-354 (1998) 
 
  Pancreatic carcinoma r-NK4, ip   Inhibitions of growth, Tomioka Det al., 
    (SUIT-2 cells,  invasion and metastasis, Cancer Res 61:  
     intra-pancreas,  Anti-angiogenesis, 7518-7524 
     Mouse)  Reduced ascites,  (2001) 
  Prolonged survival 
 
  Colon carcinoma NK4 cDNA,  Inhibitions of growth, Wen J et al., 
    (MC-38 cells, bolus iv   invasion and metastasis, Cancer Gen Ther 
     intra-spleen, (hydrodynamics) Anti-angiogenesis, 11: 419-430 
     Mouse)   Prolonged survival (2004) 
 
 B. Respiratory system: 
  Lung carcinoma r-NK4, sc   Inhibitions of growth Kuba K et al., 
    (Lewis carcinoma,   and metastasis,  Cancer Res 60: 
     sc, Mouse)   Anti-angiogenesis, 6737-6743 
   Enhanced apoptosis (2000) 
 
  Lung carcinoma Adeno-NK4, Inhibition of growth, Maemondo M 
    (A549 cells, intra-tumor  Anti-angiogenesis et al., Mol Ther 5: 
     sc, Mouse) or ip    177-185 (2002) 
 
  Mesothelioma Adeno-NK4, Inhibition of growth, Suzuki Y et al., 
    (EHMES-10 cells, intra-tumor  Enhanced apoptosis, Int J Cancer 127:  
     sc, Mouse)   Anti-angiogenesis 1948-1957  
     (2010) 
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 C. Reproductive system: 
  Prostate carcinoma r-NK4, sc   Inhibition of growth, Davies G et al., 
    (PC-3 cells,  (osmotic pump) Anti-angiogenesis Int J Cancer 106: 
     sc, Mouse)     348-354 (2003) 
 
  Ovarian carcinoma NK4 gene,  Inhibition of metastasis, Saga Y et al., 
    (HRA cells, Stable   Prolonged survival Gene Ther 8:  
     ip, Mouse) transfection   1450-1455 (2001) 
 
 D. Hematopoietic system: 
  Lymphoma Adeno-NK4, Inhibition of growth, Kikuchi T et al., 
    (E.G7-OVA cells, intra-tumor  Anti-angiogenesis, Blood 100:  
     sc, Mouse) (with DC)  Induction of CTL 3950-3959 
     (2003) 
 
  Multiple myeloma Adeno-NK4, im  Inhibition of growth, Du W et al., 
    (KMS11/34 cells,   Anti-angiogenesis, Blood 109: 
     sc, Mouse)   Enhanced apoptosis 3042-3049 
     (2007) 
 
 E. Other organ or tissues: 
  Melanoma Adeno-NK4, iv  Inhibitions of growth Kishi Y et al., 
    (B16F10 cells,   and metastasis,  Cancer Sci 100: 
     sc, Mouse)   Anti-angiogenesis 1351-1358 
     (2009) 
 
  Glioblastoma r-NK4,  Inhibition of growth, Brockmann MA 
    (U-87 MG cells, intra-tumor  Anti-angiogenesis, et al., Clin Cancer 
     Intra-brain, Mouse)   Enhanced apoptosis Res 9: 
     4578-4585 
     (2003) 
 
  Breast carcinoma r-NK4, sc   Inhibition of growth, Martin TA et al., 
    (MDAMB231 cells,   Anti-angiogenesis Carcinogenesis 
     sc, Mouse)     24: 1317-1323 
          (2003) 
 
Adeno-NK4, adenoviral vector carrying NK4 cDNA; r-NK4, recombinant NK4 protein; sc, 
subcutaneous; iv, intravenous; ip, intraperitoneal; im, intramuscular; DC, dendritic cells; and CTL, 
cytotoxic T lymphocytes. 

Table 1. Representative studies to show therapeutic effects of NK4 on distinct types of 
tumors in animal models 

6. Hydodynamics-based NK4 gene therapy for colon cancer inhibition 
Hydrodynamic delivery has emerged as the simplest and effective method for intracellular 
delivery of subjective genes in rodents; this process requires no special equipment. The 
system employs a physical force generated by the rapid injection of a large volume of 
solution into a blood vessel to enhance the permeability of endothelium and the plasma 
membrane of the parenchyma cells, such as hepatocytes, to facilitate a delivery of the 
substance into cells (Bonamassa et al., 2011). Using this technique in mice, we established an 
endocrine delivery system for NK4 that leads to an inhibition of the malignant behavior of 
cancers, as follows. 
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6.1 NK4 supplementation system via hydrodynamic gene delivery in mice 
Numerous clinical studies have indicated the apparent increases in serum HGF levels in 
patients during the progression of cancers (Wu et al., 1998; Osada et al., 2008). It is likely that 
HGF in blood protects cancer cell suspension from anoikis-like cell death (Zeng et al., 2002). 
Thus, we predict that over-production of NK4 in blood would overcome the HGF-mediated 
metastatic events seen in blood flow (and possibly in local sites). Hydrodynamic-based gene 
delivery is known to achieve an efficient expression of exogenous genes predominantly in 
the liver but much lesser in the kidney and spleen (Suda et al., 2007). Based on this 
background, we established a method for the induction and maintenance of higher levels of 
NK4 in blood through repeated injections of NK4 cDNA-containing plasmid. 
For hydrodynamic-based gene delivery, 5 microgram of plasmid DNA (pCAGGS-NK4), or 
pCAGGS-empty (as a control), in saline was injected within 5 seconds into tail veins of mice 
at 2.4 ml per 30g body weight (Wen et al., 2004; 2007). As a result, exogenous NK4 was 
detected, and plasma NK4 reached a mean value of 49.5 ng/ml 24 hours post-bolus injection 
and decreased to 15.4 ng/ml on day 3. Following the second and third injections, the plasma 
NK4 level again reached approximately 70 and 130 ng/ml on days 8 and 15, respectively. 
Thus, plasma NK4 levels increased following additional administration of the expression 
plasmid, and were maintained at levels of > 8 ng/ml during 3 weeks post-treatment (Fig. 5). 
 

 
Fig. 5. Hydrodynamics-mediated NK4 delivery system in mice. (A) An experimental 
protocol of NK4 gene administration. Five microgram of pCAGGS-NK4 was administered 
intravenously into mice on day 0, 7 and 14. (B) Changes in plasma NK4 levels following 
repetitive administration of expression plasmid for NK4. Arrows mean the time of plasmid 
administration. See reference (Wen et al., 2007) for further information. 

6.2 Inhibition of colon cancer metastasis by NK4 gene delivery 
Colon cancer is one of the most common cancers in the world, with a high propensity to 
metastasize: 30-40% of patients have metastatic disease at the initial diagnosis. The liver is 
the most frequent site of metastasis, and hepatic failure is a lethal event during colon cancer. 
Thus, direct inhibition of the dissociation, spreading and invasion of cancer cells is expected 
to become efficient treatment. With regard to this, HGF stimulates the invasion of MC-38 
mouse colon cancer cells across MatriGel (Parr et al., 2000), which is composed of laminin 
and other matrices and mimics the basement membrane in vivo. In this model, NK4 has 
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inhibited the HGF-mediated migration of MC-38 cells in a culture model of colon cancer 
invasion. This anti-invasive effect of NK4, obtained by in vitro studies, is demonstrated in 
vivo in the following two studies. 
An hepatic metastatic model was prepared by the injection of mouse MC-38 cells into the 
spleen. During the progression of colon cancer in hepatic tissues, HGF was over-produced 
by hepatic sinusoidal cells, while MET tyrosine phosphorylation became evident, 
particularly around the front lines of invasive zones. Supplementation of NK4 in blood and 
livers via a single injection of NK4-cDNA containing plasmid (pCAGGS-NK4) resulted in 
the loss of MET tyrosine phosphorylation (Fig. 6). Under such a MET-inactivated condition 
by NK4 treatment, hepatic invasion by colon carcinoma was strongly inhibited (Wen et al., 
2004). 
 

 
Fig. 6. Successful outcome of hydrodynamics-based NK4 gene therapy in a mouse model of 
colon cancer. The hepatic invasion model is prepared by intra-splenic inoculation of MC-38 
colon carcinoma in mice. In the control group, invasion of carcinoma cells into neighboring 
hepatic areas becomes evident, along with an induction of MET tyrosine phosphorylation 
(p-MET) and an increase in vessel numbers. In contrast, NK4 suppresses tumor invasion by 
inhibiting MET tyrosine phosphorylation and reducing angiogenesis. As a result, NK4 gene 
therapy prolongs the survival of these mice (Wen et al., 2004). 

Repeated administrations of NK4-containing plasmid DNA also inhibited the malignant 
behaviors of colon carcinoma (Wen et al., 2007). Actually, NK4 repetitive gene therapy 
potently inhibited the muscular invasion of MC-38 carcinoma cells. Furthermore, 
angiogenesis in the colon cancer was markedly suppressed by NK4 repetitive therapy, along 
with an increase in tumor apoptosis. Overall, the number of hepatic metastatic nodules was 
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dramatically decreased by the repeated injections of NK4-cDNA containing plasmid. This 
study provides an anti-tumor model where NK4 is supplemented via a hydrpdynamics-
based gene therapy (Wen et al., 2007). 
Recently, hydrodynamic gene delivery using a rapid injection of a relatively large volume of 
DNA solution has facilitated experimental gene therapy studies, particularly in rodents 
(Suda et al., 2007). This method is superior to the existing delivery systems because of its 
simplicity, efficiency, and versatility. Hydrodynamic gene delivery is also useful for 
supplementation of HGF, an intrinsic repair factor, for the inhibition of, or recovery from, 
intractable organ diseases, such as acute renal failure (Dai et al., 2002) or pulmonary airway 
hyper-responsiveness during asthma (Okunishi et al., 2005). In these experiments, plasma 
HGF levels were sustained within a pharmacological range (3-30 ng/ml). Wide success in 
applying hydrodynamic principles to delivery of NK4- or HGF-related DNA, RNA, 
proteins, and synthetic compounds, into the cells in various tissues of small animals, has 
inspired the recent attempts at establishing a hydrodynamic procedure for clinical use. 

7. Summary and perspective 
NK4-related studies provided a proof-of-concept that MET signaling from stroma-derived 
HGF plays a pivotal role in eliciting tumor invasion and metastasis (Matsumoto & 
Nakamura., 2005; Nakamura et al., 2010). Human genetic studies also strengthened the 
important role of MET activation for tumor malignancy. There is now ample evidence to 
demonstrate the role of MET mutations in tumor malignancy (Lengyel et al., 2007; 
Matsumoto et al., 2008a,b; Pao et al., 2011). Of interest, mutation of the von-Hippel-Lindau 
(VHL) gene leads to renal clear cell carcinoma through constitutive MET tyrosine 
phosphorylation (Nakaigawa et al., 2006), hence suggesting a critical role of wild-type VHL 
in inhibiting MET over-activation as a negative regulator. 
During the progression of malignant tumors, soluble MET is producible by carcinoma cells 
through an ectodomain shedding cascade (Wader et al., 2011). Soluble MET inhibits the 
HGF-MET complex and signaling transduction. Thus, MET shedding system is considered 
as a self-defense response that minimizes tumor metastasis. Likewise, an NK4-like fragment 
of the HGF α-chain can be secreted from human breast carcinoma, which inhibits MET 
tyrosine phosphorylation (Wright et al., 2009). Thus, “endogenous” soluble MET and NK4-
like variant appear to reduce HGF-MET signaling and delay tumor progression, but this 
response is insufficient, allowing for tumor metastasis. Thus, supplemental therapy with 
NK4 is a reasonable strategy to completely block tumor metastasis. 
The hope is that angiogenesis inhibition might control tumor metastasis (Yancopoulos et al., 
1998). However, long-term use of angiogenesis inhibitors, such as VEGF inhibitor, results in 
hypoxia-resistance (Fischer et al., 2007), possibly due to hypoxia-induced MET up-regulation 
by cancer (Bottaro & Liotta, 2003). NK4 is an angiogenesis inhibitor with the ability to inhibit 
MET activation, and discovery of this fragment opened up a new avenue for the 
development of freeze-and-dormancy therapy (Fig. 7). Thus, NK4 is now defined as 
“Malignostatin”. In addition to NK4, several anti-metastatic drugs have been proposed, 
with a major focus on small molecules that inhibit the tyrosine kinase activity of MET; 
ribozyme; small-interfering RNA; anti-HGF antibodies; soluble MET; and HGF-variant 
decoys (Jiang et al., 2005; Benvenuti & Comoglio, 2007; Eder et al., 2009; Underiner et al., 
2010; Cecchi et al., 2010). HGF-MET targeting research will shed more light on cancer 
biology, pathology and new technologies to overcome host death due to cancer metastasis. 
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Fig. 7. Freeze-and-dormancy therapy of malignant tumors by NK4/malignostatin. NK4 
blocks tumor invasion and metastasis through an inhibition of HGF-MET signals as an 
HGF-antagonist. Furthermore, NK4 inhibits tumor angiogenesis via a perlecan-dependent 
mechanism. Such a dual function of NK4 contributes to “freeze” and “dormancy” anti-
cancer therapy. 
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1. Introduction 
Many of the diverse material properties of soft materials (polymer solutions, gels, 
filamentous proteins in cells, etc.) stem from their complex structures and dynamics with 
multiple characteristic length and time scales. A wide variety of technologies, from paints to 
foods, from oil recovery to processing of plastics, all heavily rely on the understanding of 
how complex fluids flow (Larson, 1999). 
Rheological measurements on complex materials reveal viscoelastic responses which 
depend on the time scale at which the sample is probed. In order to characterize the 
rheological response one usually measures the shear or the Young modulus as a function of 
frequency by applying a small oscillatory strain of frequency ω. Typically, commercial 
rheometers probe frequencies up to tens of Hz, the upper range being limited by the onset of 
inertial effects, when the oscillatory strain wave decays appreciably before propagating 
throughout the entire sample. If the strain amplitude is small, the structure is not 
significantly deformed and the material remains in equilibrium; in this case the affine 
deformation of the material controls the measured stress, and the time-dependent stress is 
linearly proportional to the strain (Riande et al., 2000). 
Even though standard rheological measurements have been very useful in characterizing 
soft materials and complex fluids (e.g. colloidal suspensions, polymer solutions and gels, 
emulsions, and surfactant solutions), they are not always well suited for all systems because 
milliliter samples are needed thus precluding the study of rare or precious materials, 
including many biological samples that are difficult to obtain in large quantities. Moreover, 
conventional rheometers provide an average measurement of the bulk response, and do not 
allow for local measurements in inhomogeneous systems. To address these issues, a new 
methodology, microrheology, has emerged that allows to probe the material response on 
micrometer length scales with microliter sample volumes. Microrheology does not 
correspond to a specific experimental technique, but rather a number of approaches that 
attempt to overcome some limitations of traditional bulk rheology (Squires & Mason, 2010; 
Wilson & Poon, 2011). Advantages over macrorheology include a significantly higher range 
of frequencies available without time-temperature superposition (Riande et al., 2000), the 
capability of measuring material inhomogeneities that are inaccessible to macrorheological 
methods, and rapid thermal and chemical homogeneization that allow the transient 
rheology of evolving systems to be studied (Ou-Yang & Wei, 2010). Microrheology methods 
typically use embedded micron-sized probes to locally deform the sample, thus allowing 
one to use this type of rheology on very small volumes, of the order of a microliter. Macro- 
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and microrheology probe different aspects of the material: the former makes measurements 
over extremely long (macroscopic) length scales using a viscometric flow field, whereas the 
latter effectively measures material properties on the scale of the probe itself (Squires & 
Mason, 2010; Breedveld & Pine, 2003). As the probe increases in size, one might expect that 
micro- and macrorheology would converge, however, as it has been suggested, it is possible 
that macro- and microrheology techniques do not probe exactly the same physical 
properties because - even in the continuum (large probe) limit - one experiment uses a 
viscometric flow whereas the other does not (Kahir & Brady, 2005; Lee et al., 2010; Schmidt 
et al., 2000; Oppong & de Bruyn, 2010). 
One can distinguish two main families of microrheological experiments: One type of 
experiments focuses on the object itself; for example, the study of motor proteins aims at 
understanding the mechanical motions of the protein associated with enzymatic activities 
on the molecular level (Ou-Yang & Wei, 2010). The other type of experiment aims at 
understanding the local environment of the probe by observing changes in its random 
movements (Crocker & Grier, 1996; MacKintosh & Schmidt, 1999). Fundamentally different 
from relaxation kinetics, microrheology measures spontaneous thermal fluctuations without 
introducing major external perturbations into the systems being investigated. Other well-
established methods in this family are dynamic light scattering (Dasgupta et al., 2002; 
Alexander & Dalgleish, 2007; Tassieri et al. 2010), and fluorescence correlation spectroscopy 
(Borsali & Pecora, 2008; Wöll et al., 2009). With recent advancement in spatial and temporal 
resolution to subnanometer and submillisecond, particle tracking experiments are now 
applicable to study of macromolecules (Pan et al., 2009) and intracellular components such 
as cytoskeletal networks (Cicuta & Donald, 2007). Detailed descriptions of the methods and 
applications of microrheology to the study of bulk systems have been given in review 
articles published in recent years (Crocker & Grier 1996; MacKintosh & Schmidt, 1999; 
Mukhopadhyay & Granick, 2001; Waigh, 2005; Gardel et al., 2005; Cicuta & Donald, 2007). 
Interfaces play a dominant role in the behavior of many complex fluids. Interfacial rheology 
has been found to be a key factor in the stability of foams and emulsions, compatibilization of 
polymer blends, flotation technology, fusion of vesicles, etc. (Langevin, 2000). Also, proteins, 
lipids, phase-separated domains, and other membrane-bound objects diffuse in the plane of an 
interface (Cicuta et al., 2007). Particle-laden interfaces have attracted much attention in recent 
years because of the tendency of colloidal particles to become (almost irreversibly) trapped at 
interfaces and their behavior once there has lead to their use in a wide variety of systems 
including drug delivery, stabilization of foams and emulsions, froth, flotation, or ice cream 
production. There still is a need to understand the colloidal interactions to have control over 
the structure and therefore the properties of the particle assemblies formed, specially because 
it has been pointed out that the interactions of the particles at interfaces are far more complex 
than in the bulk (Binks & Horozov, 2006; Bonales et al., 2011). In recent years books and 
reviews of particles at liquid interfaces have been published (Kralchewski & Nagayama, 2001). 
The dynamic properties of particle-laden interfaces are strongly influenced by direct 
interparticle forces (capillary, steric, electrostatic, van der Waals, etc.) and complicated 
hydrodynamic interactions mediated by the surrounding fluid. At macroscopic scales, the 
rheological properties of particle-laden fluid interfaces can be viewed as those of a liquid-
liquid interface with some effective surface viscoelastic properties described by effective shear 
and compressional complex viscoelastic moduli. 
A significant fact is that for the simplest fluid-fluid interface, different dynamic modes have to 
be taken into account: the capillary (out of plane) mode, and the in-plane mode, which 
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contains dilational (or extensional) and shear contributions. For more complex interfaces, such 
as thicker ones, other dynamic modes (bending, splaying) have to be considered (Miller & 
Liggieri, 2009). Moreover, the coupling of the abovementioned modes with 
adsorption/desorption kinetics may be very relevant for interfaces that contain soluble or 
partially soluble surfactants, polymers or proteins (Miller & Liggieri, 2009; Muñoz et al., 2000; 
Díez-Pascual et al. 2007). In the case of surface shear rheology, most of the information 
available has been obtained using macroscopic interfacial rheometers which in many cases 
work at low Boussinesq numbers (Barentin et al., 2000; Gavranovic et. al., 2005; Miller & 
Liggieri, 2009; Maestro et al., 2011.a). Microrheology has been foreseen as a powerful method 
to study the dynamics of interfaces. In spite that the measurement of diffusion coefficients of 
particles attached to the interface is relatively straightforward with modern microrheological 
techniques, many authors have relied on hydrodynamic models of the viscoelastic 
surroundings traced by the particles in order to obtain variables such as interfacial elasticity or 
shear viscosity. The more complex the structure of the interface the stronger are the 
assumptions of the model, and therefore it is more difficult to check their validity. In the 
present work we will briefly review modern microrheology experimental techniques, and 
some of the recent results obtained for bulk and interfacial systems. Finally, we will 
summarize the theoretical models available for calculating the shear microviscosity of fluid 
monolayers from particle tracking experiments, and discuss the results for some systems. 

2. Experimental techniques 
For studying the viscoelasticity of the probe environment there are two broad types of 
experimental methods: active methods, which involve probe manipulation, and passive 
methods, that relay on thermal fluctuations to induce motion of the probes. Because thermal 
driving force is small, no sample deformation occurs that exceeds equilibrium thermal 
fluctuations. This virtually guarantees that only the linear viscoelastic response of the 
embedding medium is probed (Waigh, 2005). On the contrary, active methods allow the 
nonlinear response to be inferred from the relationship between driving force and probe 
velocity, in such cases the microstructure itself can be deformed significantly so that the 
material response differs from the linear case (Squires, 2008). As a consequence, passive 
techniques are typically more useful for measuring low values of predominantly viscous 
moduli, whereas active techniques can extend the measurable range to samples with 
significant elasticity modulus. Figure 1 shows the typical ranges of frequencies and shear 
moduli that can be studied with the different microrheological techniques. 

2.1 Active techniques 
2.1.1 Magnetic tweezers 
This is the oldest implementation of an active microrheology technique, and it has been 
recently reviewed by Conroy (Conroy, 2008). A modern design has been described by Keller 
et al. (2001). The method combines the use of strong magnets to manipulate embedded 
super-paramagnetic or ferromagnetic particles, with video microscopy to measure the 
displacement of the particles upon application of constant or time-dependent forces. Strong 
magnetic fields are required to induce a magnetic dipole in the beads and magnetic field 
gradients are applied to produce a force. The force exerted is typically in the range of 10 pN 
to 10 nN depending on the experimental details (Keller et al. 2001). The spatial resolution is 
typically in the range of 10-20 nm, and the frequency range is 0.01 – 1000 Hz. Three modes 
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of operation are possible: a viscosimetry measurement after applying a constant force, a 
creep response experiment after applying a pulse excitation, and the measurement of the 
frequency dependent viscoelastic moduli in response to an oscillatory stress (Riande et al., 
2000). This technique has been extensively applied to characterize the bulk viscoelasticity of 
systems of biological relevance (Wilson & Poon, 2011; Gardel et al., 2005). Moreover, real-
time measurements of the local dynamics have also been reported for systems which change 
in response to external stimuli (Bausch et al., 2001), and rotational diffusion of the beads has 
also been used to characterize the viscosity of the surrounding fluid and to apply 
mechanical stresses directly to the cell surfaces receptors using ligand coated magnetic 
colloidal particles deposited onto the cell membrane (Fabry et al., 2001). Finally, this 
technique is well suited for the study of anisotropic systems by mapping the strain-field, 
and for studying interfaces (Lee et al., 2009). In recent years (Reynaert et al., 2008) have 
described a magnetically driven macrorheometer for studying interfacial shear viscosities in 
which one of the dimensions of the probe (a magnetic needle) is in the μm range. This has 
allowed the authors to work at rather high values of the Boussinesq number, which is one of 
the typical characteristics of the microrheology techniques. 
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Fig. 1. Frequency and elasticity modulus range available to the different microrheological 
techniques. Continuous vertical represent the frequency range, and dashed arrows the range 
of shear moduli (G´, G´´) that are accessible to each technique. a)Video particle tracking. b) 
Optical Tweezers. c) Diffusing wave spectroscopy: upper line for transmission geometry, 
lower line for back geometry. d) Magnetic microrheology. e) Atomic Force Microscopy 
(AFM). Adapted from Waigh (2005). 

2.1.2 Optical tweezers 
This technique uses a highly focused laser beam to trap a colloidal particle, as a consequence 
of the momentum transfer associated with bending light. The most basic design of an optical 
tweezer is shown in Figure 2.a: A laser beam (usually in the IR range) is focused by a high-
quality microscope (high numerical aperture objective) to a spot in a plane in the fluid. 
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Figure 2.b shows a detailed scheme of how an optical trap is created. Light carries a 
momentum, in the direction of propagation, that is proportional to its energy. Any change in 
the direction of light, by reflection or refraction, will result in a change of the momentum of 
the light. If an object bends the light, conservation momentum requires that the object must 
undergo an equal and opposite momentum change, which gives rise to a force acting on the 
subject. In a typical instrument the laser has a Gaussian intensity profile, thus the intensity 
at the center is higher than at the edges. When the light interacts with a bead, the sum of the 
forces acting on the particle can be split into two components: Fsc, the scattering force, 
pointing in the direction of the incident beam, and Fg, the gradient force, arising from the 
gradient of the Gaussian intensity profile and pointing in the plane perpendicular to the 
incident beam towards the center of the beam. Fg is a restoring force that pulls the bead into 
the center of the beam. If the contribution to Fsc of the refracted rays is larger than that of the 
reflected rays then a restoring force is also created along the beam direction and a stable trap 
exists. A detailed description of the theoretical basis and of modern experimental setups has 
been given in Refs. (Ou-Yang & Wei, 2010; Borsali & Pecora, 2008; Resnick, 2003) that also 
include a review of applications of optical and magnetic tweezers to problems of biophysical 
interest: ligand-receptor interactions, mechanical response of single chains of biopolymers, 
force spectroscopy of enzymes and membranes, molecular motors, and cell manipulation. A 
recent application of optical tweezers to study the non-linear mechanical response of red-
blood cells is given by Yoon et al. (2008). Finally, optical tweezers are also suitable for the 
study of interfacial rheology (Steffen et al., 2001). 
 

 
Fig. 2. a) Basic design of an optical tweezers instrument. b) Details of the physical principles 
leading to the optical trap. 

2.2 Passive techniques 
These techniques use the Brownian dynamics of embedded colloids to measure the rheology 
of the materials. Since passive methods use only the thermal energy of the beads, materials 
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must be sufficiently soft for the motion of the particles to be measure precisely. The 
resolution typically ranges from 0.1 to 10 nm and elastic modulus from 10 to 500 Pa can be 
measured with micron sized particles. Thermal fluctuations of particles in transparent bulk 
systems have traditionally been studied using light scattering techniques that allow one to 
measure the intensity correlation function from which the field correlation function g1(t) can 
be calculated, t being the time. For monodisperse particles g1(t) is directly related to the 
mean squared displacement of the particles, MSD, through 

 g1(t) = exp [-q2 <Δr2(t)>/6] (1) 

q being the scattering wave vector (Borsali & Pecora, 2008). Once <Δr2(t)> is obtained, it is 
possible to calculate the real and imaginary components of the shear moduli, G’ and G” 
(Oppong & de Bruyn, 2010). 

2.2.1 Diffusion wave spectroscopy 
Diffusion wave spectroscopy, DWS, allows measurements of multiple scattering media, and 
therefore non-transparent samples can be studied. The output of the technique allows to 
calculate <Δr2(t)>, and because of the multiple scattering all q-dependent information is lost 
as photons average over all possible angles, thus resulting only in two possible scattering 
geometries: transmission and backscattering. The frequency range of both geometries is 
complementary (see Figure 1) spanning from 0.1 Hz to 1MHz. For bulk polymer solutions 
and gels excellent agreement of the G’ and G” values obtained by DWS and those obtained 
with conventional rheology has been found (Dasgupta et al., 2002; Dasgupta & Weitz, 2005). 
Even though these light scattering techniques are quite powerful tools for bulk 
microrheology, they have been scarcely used to probe the rheology of interfaces; in fact, as 
far as we know, only in old papers of Rice’s group a set-up was described to measure 
dynamic light scattering of polymer monolayers using evanescent waves (Lin et al., 1993; 
Marcus et al., 1996). 

2.2.2 Fluorescence correlation spectroscopy (FCS) 
It is usually combined with optical microscopy, in particular confocal or two-photon 
microscopy. In these techniques light is focused on a sample and the fluorescence intensity 
fluctuations (due to diffusion, physical or chemical reactions, aggregations, etc.) can be 
measured in the form of a temporal correlation function. Similarly to what has been 
discussed in the light scattering technique, it is possible to obtain the MSD from the 
correlation function. In most experiments, Brownian motion drives the fluctuation of 
fluorescent-labeled molecules (or particles) within a well-defined element of the 
measurement cell. The samples have to be quite dilute, so that only few probes are within 
the focal spot (usually 1 – 100 molecules in one fL). Because of the tiny size of the confocal 
volume (approx. 0.2 fL), the measurements can be carried out in living cells or on cell 
membranes. In case that the interactions between two molecules wish to be studied, two 
options are available depending on their relative size. If their size is quite different, only one 
of them has to be labeled with a fluorescent dye (autocorrelation). If the diffusion 
coefficients of both molecules are similar, both have to be labeled with different dies (cross-
correlation). A detailed description of FCS techniques and of the data analysis has been 
recently given by Riegler & Elson (2001). Recent problems to which FCS has been applied 
include: dynamics of rafts in membranes and vesicles, dynamics of supramolecular 
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complexes, proteins, polymers, blends and micelles, electrically induced microflows, 
diffusion of polyelectrolytes onto polymer surfaces, normal and confined diffusion of 
molecules and polymers, quantum dots blinking, dynamics of polymer networks, enzyme 
kinetics and structural heterogeneities in ionic liquids (Winkler, 2007; Heuf et al., 2007; Ries 
& Schwille, 2008; Cherdhirankorn et al., 2009; Wöll et al., 2009; Guo et al., 2011). The use of 
microscopes makes FCS suitable for the study of the dynamics of particles at interfaces. 
Moreover, contrary to particle tracking techniques, it is not necessary to “see” the particles, 
thus interfaces with nanometer sized particles can be studied (Riegler & Elson, 2001). 

2.2.3 Particle tracking techniques 
The main idea in particle tracking is to introduce onto the interface a few spherical particles 
of micrometer size and follow their trajectories (Brownian motion) using videomicroscopy. 
The trajectories of the particles, either in bulk or on surfaces, allow one to calculate the mean 
square displacement, which is related to the diffusion coefficient, D, and the dimensions, d, 
in which the translational motion takes place by 

 ( ) ( ) 22
0 0r t r t t r(t ) 2dDtα Δ = − − = 

 
 (2) 

where the brackets indicate the average over all the particles tracked, and t0 the initial time. 
In case of diffusion in a purely viscous material or interface, α is equal to 1, and the usual 
linear relation is obtained between MSD and t. When the material or interface is viscoelastic, 
α becomes lower than 1 and this behavior is called sub-diffusive. It is worth noticing that 
sub-diffusivity can be found not only as a consequence of the elasticity of the material, but 
also due to particle interactions as concentration increases, an effect that is particularly 
important at interfaces. Anomalous diffusion is also found in many systems of biological 
interest where the Brownian motion of the particles is hindered by obstacles (Feder et al., 
1996), or even constrained to defined regions (corralled motion) (Saxton & Jacobson, 1997). 
The diffusion coefficient is related to the friction coefficient, f, by the Einstein relation 

 Bk T
D

f
=  (3) 

In 3D Stokes law, f=6πηa, applies and for pure viscous fluids the shear viscosity, η, can be 
directly obtained from the diffusion coefficient of the probe particle of radius a at infinite 
dilution. The situation is much more complex in the case of fluid interfaces, and it will be 
discussed in more detail in the next section. 
Figure 3 shows a sketch of a typical setup for particle tracking experiments. A CCD 
camera (typically 30 fps) is connected to a microscope that permits to image either the 
interface prepared onto a Langmuir trough, or a plane into a bulk fluid. The series of 
images are transferred to a computer to be analyzed to extract the trajectories of a set of 
particles. Figure 4.a shows typical results of MSD obtained for a 3D gel, combining DWS 
and particle tracking techniques which shows a very good agreement between both 
techniques, and illustrates the broad frequency range that can be explored. Figure 4.b 
shows a typical set of results for the MSD of a system of latex particles (1 μm of diameter) 
spread at the water/n-octane interface. The analysis of MSD within the linear range in 
terms of Eq. (2) allows to obtain D. 
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One of the experimental problems frequently found in particle tracking experiments is that 
the linear behavior of the MSD vs. t is relatively short. This may be due to poor statistics in 
calculating the average in Eq.(2), or to the existence of interactions between particles. As it 
will be discussed below, this may be a problem in calculating the shear modulus from the 
MSD. An additional experimental problem may be found when the interaction of the 
particles with the fluid surrounding them is very strong, which may lead to changes in its 
viscoelastic modulus, or when the samples are heterogeneous at the scale of particle size, a 
situation rather frequent in biological systems, e.g. cells (Konopka & Weisshaar, 2004), or 
gels (Alexander & Dalgleish, 2007), or solutions of rod-like polymers (Hasnain & Donald, 
2006). In this case the so-called “two-point” correlation method is recommended (Chen et 
al., 2003). In this method the fluctuations of pairs of particles at a distance Rij are measured 
for all the possible values of Rij within the system. Vector displacements of individual 
particles are calculated as a function of lag time, t, and initial time, t0. 
 

 
Fig. 3. Typical particle tracking setup for 2D microrheology experiments: 1: Langmuir 
trough; 2: illumination; 3: microscope objective; 4: CCD camera; 5: computer; 6: thermostat; 
7: electronics for measuring the temperature and the surface pressure. 

Then the ensemble averaged tensor product of the vector displacements is calculated (Chen 
et al., 2003):  

 ( )ji
ij 0

i j,t
D (r, ) r (r, t) r (r, t) r R tαβ α βτ δ

≠
 = Δ Δ −   (4) 

where a and b are coordinate axes. The average corresponding to i = j represents the one-
particle mean-squared displacement. 
Two-point microrheology probes dynamics at different length scales larger than the particle 
radius, although it can be extrapolated to the particle’s size thus giving the MSD (Liu et al., 
2006). In fact it has been found that for Rij close to the particle radius, the two-point MSD 
matches the tendency of the MSD obtained by tracking single particles. However, both sets 
of results are different for Rij’s much larger than the particle diameter. This is a consequence 
of the fact that single particle tracking reflects both bulk and local rheologies, and therefore 
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the heterogeneities of the sample. Figure 5 shows a comparison of the MSD obtained by 
single particle and two-point tracking for a solution of entangled F-actin solutions at 
different length scales from 1 to 100 μm (Liu et al., 2006). Both methods agree when the 
particle size is of the same order than the scale of the inhomogeneities of the system when 
the particle probes the average structure. Otherwise, the two methods lead to different 
results. In general, quite good agreement is found between two-point tracking experiments 
and macroscopic rheology experiments. 
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Fig. 4. a) Typical results of mean square displacement for a 3D gel made out of a 
polysaccharide in water [44]. Filled points are from DWS experiments, and open symbols 
are from particle tracking. The continuous line is an eye guide. b) Mean square displacement 
(MSDabs), circles, and relative square displacement (MSDrel), triangles, for latex particles at 
the water/n-octane interface. Experimental details: set of 300 latex particles of 1 μm of 
diameter, surface charge density: -5.8 mC·cm-2, and reduced surface density, ρ*=1.2·10-3 
(ρ*=ρa2), 25 ºC. Figure 4.a is reproduced from Vincent et al. (2007). Inset corresponds to a 
smaller time interval. 
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Fig. 5. Comparison of one-particle (open symbols) and two-particle (closed symbols) MSD 
for a solution of F-actin using particles of radius 0.42 μm. Different average actin filaments 
are used: a) 0.5 μm, b) 2 μm, c) 5 μm, d) 17 μm. Notice that when the scale of the 
inhomogeneities of the solution is similar to the particle size both methods lead to the same 
results. The figure is reproduced from Liu et al. (2006).  

For the case in which the particles are embedded in a viscoelastic fluid, particle tracking 
experiments allow one to obtain the viscoelastic moduli of the fluids. Manson & Weitz 
(1995) first in an ad-hoc way, and later Levine & Lubensky (2000) in a more rigorous way, 
proposed a generalization of the Stokes-Einstein (GSE) equation: 

 ( ) ( )
2 B2k T

r s
3 asG sπ

Δ =   (5) 

where G(s) is the Laplace transform of the stress relaxation modulus, s is the Laplace 

frequency, and a is the radius of the particles. An alternative expression for the GSE 
equation can be written in the Fourier domain as: 

 ( )
( )

B
2

k T
G *

ai r t
ω

π ω
=

ℑ Δ
 (6) 

where ℑ represents a unilateral Fourier transform, which is effectively a Laplace transform 
generalized for a complex frequency iω. Different methods have been devised to obtain 
G(s) from the experimental MSD including direct Laplace or Fourier transformations 
(Dasgupta et al., 2002; Evans et al., 2009), or analytical approximations (Mason, 2000; Wu & 
Dai, 2006). It must be stressed that the GSE equation is valid under the following 
approximations: (a) the medium around the sphere may be treated as a continuum material, 
which requires that the size of the particle be larger than any structural length scale of the 
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material, (b) no slip boundary conditions, (c) the fluid surrounding the sphere is 
incompressible, and (d) no inertial effects. 
The application of the GSE is limited to a frequency range limited in the high frequency 
range by the appearance of inertial effects. The high frequency limit is imposed by the fact 
that the viscous penetration depth of the shear waves propagated by the particle motion 
must be larger than the particle size. The penetration depth is proportional to 2 1/2(G * / )ρω , 
where ρ is the density of the fluid surrounding the particles, and for micron-sized particles 
in water is of the order of 1 MHz. On the other hand, the lower limit is set by the time at 
which compressional modes become significant compared to the shear modes excited by the 
particle motion. An approximate value for the low frequency limit is given by 

 
2

L
G'

a
ξω

η
≥  (7) 

ξ being the characteristic length scale of the elastic network in which the particles move. 
Again, for the same conditions mentioned above, the low-frequency limit is in the range of 
0.1 to 10 Hz. Figure 6.a shows the frequency dependence of the shear modulus for a 3D gel 
using two passive techniques: DWS and particle tracking. As it can be observed the 
agreement is very good. It must be stressed that, in order to obtain reliable Laplace or 
Fourier transforms of the MSD, it is necessary to measure the particle trajectories over long t 
periods (minutes), which makes absolutely necessary to eliminate any collective drift in the 
system. Very recently Felderhof (2009) has presented an alternative method for calculating 
the shear complex modulus from the velocity autocorrelation function, VAF, that can be 
calculated from the particle trajectories. An experimental difficulty associated to this method 
is that the VAF decays very rapidly, and therefore it is difficult to obtain many experimental 
data in the decay region.  
Under the same conditions assumed for the GSE equation, the creep compliance is directly 
related to the MSD by 

 ( ) ( )2

B

a
J t r t

k T
π= Δ  (8) 

Even though the GSE method has been applied to different bulk systems, few applications 
have been done for studying the complex shear modulus of interfaces and thin films (Wu & 
Dai, 2006; Prasad & Weeks, 2009; Maestro et al., 2011). 
The two-point correlation method also provides information about the viscoelastic moduli 
of the fluid in which the particles are embedded. In effect, the ensemble averaged tensor 
product, Eq.(4), leads to (Chen et al., 2003) 

 B
rr rr

k T 1
D (r,s) ;   D D D

22 rsG(s) θθ φφπ
= = =

  (9) 

where ( )rrD r,s is the Laplace transform of Drr(r,t) and the off-diagonal terms vanish. Figure 
6.b compares the G’ and G” results calculated for a solution of F-actin (MSD data shown in 
Figure 4) using one- and two-particle tracking methods. The results agree with those 
obtained by single-particle methods as far as the scale of the inhomogeneities is similar to 
the particle size, otherwise the single particle method is affected both by local and global 
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rheology. Notice that the results of the two-point technique agree with those obtained with 
conventional macroscopic rheometers. 
 

 
Fig. 6. Real and imaginary components calculated from the MSD shown in: a) the Figure 
4.a, and b) Figure 5. Notice the good agreement between the results calculated from DWS 
(closed symbols) and single particle tracking (open symbols) in Figure 5.a. The solid and 
dotted lines are guides for G’and G” results, respectively. In Figure 6.b the open symbols 
refer to G”, and the full ones to G’. Triangles correspond to single particle tracking and 
squares to two-particle tracking. Circles correspond to conventional macro-rheology. 
Figure 6.a was taken from Vincent et al. (2007) and Figure 6.b from Cherdhirankorn et al. 
(2009). 

(a)

(b) 
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3. Dynamics of particles at interfaces 
For using particle tracking techniques to get insight of the interfacial microrheology it is first 
necessary to study the diffusion of particles in the bare interface. For an inviscid interface 
the drag comes entirely from the upper and lower fluid phases (in the usual air-water 
interface only from the water subphase). The MSD of particles trapped at fluid interfaces 
depends on the surface concentration, and for very low surface concentration it is linear 
with time, thus the diffusion coefficients, D0, can be easily obtained. However, for high 
surface concentrations, even below the threshold of aggregation or fluid-solid phase 
transitions (Bonales et al., 2011), the MSD is no longer linear with time, but shows a sub-
diffusive behavior, MSD(t) ~ tα with α<1, hence D0 must be obtained from the time 
dependence of the MSD in the limit of short times.  

3.1 Shear micro-rheology of monolayers at fluid interfaces  
In the case of particles trapped at interfaces Einstein’s equation, Eq.(3), is still valid. 
However, one cannot calculate the friction coefficient using Stokes equation and directly 
substituting the interfacial shear viscosity. Instead, f is a function of the viscosities of the 
phases (η’s), the geometry of the particle (the radius “a” for spheres), the contact angle 
between the probe particle and the interface (θ), etc. For a pure 2D system there is no 
solution for the slow viscous flow equations for steady translational motion of a sphere in a 
2D fluid (Stokes paradox).  

3.1.1 Motion of a disk in and incompressible membrane of arbitrary viscosity 
Saffman & Delbrück (1975) and Hughes et al. (1981) have solved the problem of the motion 
of a thin disk immersed in a membrane of arbitrary viscosity, ηL separating two phases of 
viscosities η1 and η2. The height of the disk is assumed to be equal to the membrane 
thickness, h. They obtained the following expression for the translational mobility, 

 
( )T

1 2

1 1
b

f 4 R ( )π η η ε
= =

+ Λ
  (10) 

Where Λ(ε) is non-linear function of ε, 1 2

L

R
h

η ηε
η

  +=  
   

. Λ(ε) cannot be expressed 

analytically except for two limit cases, 

1
2 22 4 1 2

( ) ln ln O( )
2

ε ε γ ε ε ε
ε π ε

−
      Λ = − + − +     

      
 (Highly viscous membranes, e<1) 

2
( )ε

π
Λ =   (Low viscous membranes, ε>1) 

These works have been generalized by Stone & Adjari (1998) and by Barentin et al. (2000). 

3.1.2 Danov’s model for a sphere in a compressible surfactant layer 
The above theories are limited to non protruding particles (or high membrane viscosities). In 
particle tracking experiments spherical particles are used that are partially immersed in both 
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fluid phases separating the interface. Danov et al. (1995) and Fischer et al. (2006) have made 
numerical calculations of the drag coefficient of spherical microparticles trapped at fluid-
fluid interfaces. While Danov considered the interface as compressible, Fischer assumed that 
the interface is incompressible, both authors predicted the dynamics of the particles 
adsorbed on bare fluid interfaces, i.e. with no surfactant monolayers (the so-called the limit 
of cero surface viscosity). The predictions of their theories are different, and will be 
discussed in detail below. More recently, Reynaert et al. (2007) and Madivala et al. (2009) 
have studied the dynamics of spherical, weakly aggregated, and of non-spherical particles at 
interfaces, though using macroscopic rheometers. 
Danov et al. (1995) have calculated the hydrodynamic drag force and the torque acting on a 
micro spherical particle trapped at the air-liquid interface (they consider the viscosity of air 
to be zero) interface, and moving parallel to it. This model was later extended by Dimova et 
al. (2000) and by Danov et al. (2000) to particles adsorbed to flat or curved (spherical) 
interfaces separating two fluids of non vanishing viscosity. The interface was modeled as a 
compressible, 2D fluid characterized by two dimensionless parameters K and E defined as 

( )shE aη η=  and ( )dK aη η= , being ηsh and ηd the surface shear and dilational viscosity 

respectively (Note that E is the inverse of ε used by Hughes). Danov et al. made the 
following assumptions: 1) The movement implies a low Reynolds number, thus they 
ignored any inertial term; 2) the moving particle is not affected by capillarity or electro-
dipping; 3) the contact line does not move to respect to the particle surface, and 4) they 
considered E=K, i.e. the interface is compressible. With these assumptions they solved 
numerically the Navier-Stokes equation to obtain the values of the drag coefficient f as a 
function the contact angle and of E (or K). They presented their results in graphical form, 
and their results are reproduced in Figure 7. 
 

 
Fig. 7. Left: Effect of contact angle on the diffusion coefficient of a particle trapped at a fluid 
interface according to Danov’s theory. Ds0 is the diffusion coefficient for the bare interface. 
The different lines correspond to the following values of E (=K): 1) 0; 2) 1; 3) 5. Right: Effect 
of the surface to bulk shear viscosity on the diffusion coefficient. The different lines 
correspond to the following values of E (=K): 1) 0; 2) 1; 3) 5; 4) 10. Figures reproduced from 
Dimova et al. (2000). 

These curves can be used to obtain the shear viscosity of compressible surfactant layer once 
one has obtained the diffusion coefficient from particle tracking experiments, D0, for a free 
interface and in the presence of a surfactant layer. It must be stressed that, from a strict 
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theoretical point of view, the results presented by Danov are valid only in the limit E >>1, 
and for arbitrary values of the contact angle. Sickert & Rondelez (2003) were the first to 
applied Danov’s ideas to obtain the surface shear viscosity by particle tracking using 
spherical microparticles trapped at the air-water interface, which was covered with 
Langmuir films. They have measured the surface viscosity of three monolayers formed by 
pentadecanoic acid (PDA), L-a-dipalmitoylphosphatidylcholine (DPPC) and N-palmitoyl-6-
n-penicillanic acid (PPA) respectively. The values of the shear viscosities for PDA, DPPC 
and PPA reported were in the range of 1 to 11.10-10 N· s· m-1 in the liquid expanded region 
of the monolayer. These values are beyond the range that can be reached by macroscopic 
mechanical methods, that usually have a lower limit in the range of 10-7 N· s· m-1. 
Fischer considered that a monolayer cannot be considered as compressible. Due to the 
presence of a surfactant, Marangoni forces (forces due to surface tension gradients) strongly 
suppress any motion at the surface that compress or expands the interface. Any gradient in 
the surface pressure is almost instantly compensated by the fast movement of the surfactant 
at the interface given a constant surface pressure, behaving thus as a incompressible 
monolayer (Fischer assumed that the velocity of the 2D surfactant diffusion is faster than the 
movement of the beads). The fact that the drag on a disk in a monolayer is that of an 
incompressible surface has been verified experimentally by Fischer (2004). In the case of 
Langmuir films of polymers, the monolayer could be considered as compressible or 
incompressible depending on the rate of the polymer dynamics at the interface compared to 
the velocity of the beads probes. Bonales et al. (2007) have calculated the shear viscosity of 
two polymer Langmuir films using Danov’s theory, and compared these values with those 
obtained by canal viscosimetry. Video Particle tracking and Danov’s theory were used by 
Maestro et al. (2011.a) to show the glass transition in Langmuir films. Figure 8 shows the 
results obtained for a monolayer of poly(4-hydroxystyrene) onto water. For all the 
monolayers reported by Bonales et al. (2007) and Maestro et al. (2011.b) the surface shear 
viscosity calculated from Danov’s theory was lower than that measured with the 
macroscopic canal surface viscometer. Similar qualitative conclusions were reached at by 
Sickert et al. (2007) for monolayers of fatty acids and phospholipids in the liquid expanded 
region.  

3.1.3 Fischer’s theory for a sphere in a incompressible surfactant layer 
Fischer et al. (2006) have numerically solved the problem of a sphere trapped at an interface 
with a contact angle θ moving in an incompressible surface. They showed that contributions 
due to Marangoni forces account for a significant part of the total drag. This effect becomes 
most pronounced in the limit of vanishing surface compressibility. In this limit the 
Marangoni effects are simply incorporated to the model by approximating the surface as 
incompressible. They solved the fluid dynamics equations for a 3D object moving in a 
monolayer of surface shear viscosity, ηs between two infinite viscous phases. The monolayer 
surface is assumed to be flat (no electrocapillary effects). Then the translational drag 
coefficient, kT,, was expressed as a series expansion of the Boussinesq number, 

( )( )s 1 2B ·aη η η= + , a being the radius of the spherical particle:  

 0 1 2
T T Tk k Bk O(B )= + +   (11) 

For B=0, and for an air-water interface (η1, η2=0), the numerical results for kT are fitted with 
an accuracy of 3% by the formula, 
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Fig. 8. Temperature dependence of the surface shear viscosity of a monolayer of poly(4-
hydroxystyrene) at the air-water interface obtained by particle tracking (the insets show the 
corresponding values measured with a macroscopic canal viscometer. Left: experiments 
done at Π=8 mN·m-1. Right: triangles correspond to Π=3 mN·m-1 and circles to Π=2 mN·m-1. 
Notice that the results obtained by particle tracking are much smaller than those obtained 
with the canal viscometer. Data taken from Hilles et al. (2009). 

 ( )0 2
T

d
k 6 tanh 32 2 9

R
π π  ≈ +  

  
  (12) 

where d is the distance from the apex of the bead to the plane of the interface (which defines 
the contact angle). Note that if d goes to infinity, 0

Tk 6π= , which is the correct theoretical 
value for a sphere in bulk (Stokes law). The translational drag in a half immersed sphere in a 
non viscous monolayer is 0

Tk 11≈ which is about 25% higher than the drag on a sphere 
trapped at a free surface, Tk 3π= . This means that even in the absence of any appreciable 
surface viscosity the drag coefficient of an incompressible monolayer is higher than that of a 
free interface, and the data cannot be used to extract the surface shear viscosity using 
Danov’s theory especially in the limit of low surface viscosities. 
The numerical results for kT(1) are fitted within an accuracy of 3% to, 
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Sickert & Rondelez (2003) have introduced in an ad-hoc way the incompressibility effect in 
Danov’s theory by renormalizing his master curve (Figure 7 above) by the empirical value of 
1.2, and they have later reanalyzed their data by combining the Danov’s  and Fischer’s 
theories (Sickert et al., 2007). First they used the value determined by Danov et al. (2000) for 
the resistance coefficient of a sphere at a clean, compressible surface and at the contact angle 
of their experiments (50º). Afterwards, they used the predictions of Fischer et al. (2006) for a 
sphere in a surfactant monolayer (incompressible) with the contact angle corrected by the 
change in the surface tension, and in the case of E <<<1 (notice that this is the opposite E-
limit than for the original Danov’s theory),  
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D0 being the diffusion coefficient of the beads at a free surface (compressible), and D→0 is the 
value of an incompressible monolayer which surface concentration is tending to zero. They 
found that this relation is not equal to 1 but to 0.84 for their systems and experimental 
conditions which confirms the observation of Barentin et al. (2000).  
Figure 9 shows the friction coefficient for latex particles at the water-air interface obtained 
from particle tracking for polystyrene latex particles. It also shows the values calculated 
from Danov’s and from Fischer’s theories (notice that for the bare interface E = B =0). The 
figure clearly shows that both theories underestimate the experimental values over the 
whole θ range. An empirical factor of η(θ)exp/η(θ)Fisher = 1.8±0.2 brings the calculated values 
in good agreement with the experiments at all the contact angle values. A similar situation 
was found for the water-n-octane interface. 
The values of the shear viscosities calculated by Sickert & Rondelez (2003) by using the 
modified-Fisher theory are 2 or 3 times higher than the previous values. Sickert et al. (2007) 
also refers to a model developed by Stone which would be valid over the whole range of E, 
although only for a contact angle of 90º. Figure 10 shows clearly the large difference found 
between micro- and macrorheology for monolayers of poly(t-butyl acrylate) at the so-called 
Γ** surface concentration (Muñoz et al., 2000). The macrorheology results have been 
obtained using two different oscillatory rheometers. The huge difference cannot be 
attributed to specific interactions between the particles and the monolayer. 
In effect, Figure 11 shows that the values obtained are the same for particles of rather 
different surface characteristics. Moreover, the values calculated from the modified-Fisher’s 
theory or by direct application of the GSE equation lead to almost indistinguishable surface 
shear viscosities. It must be stressed that in all the cases the contact angle used is the 
experimentally measured using the gel-trapping technique described by Paunov et al.  
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Fig. 9. Friction coefficients calculated from the experimental diffusion coefficients measured 
by particle tracking experiments (symbols), by Danov’s theory (dotted line), by Fischer’s 
theory (dashed line), and by the corrected Fischer’s theory (continuous line). 
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oscillatory rheometers. 
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Fig. 11. Surface shear viscosity of a monolayer of poly(t-butyl acrylate) (molecular weight 4.6 
kDa) measured by particle tracking. Different microparticles where used: poly(styrene) of 
1.6 and 5.7 µm (stabilized by sulfonate groups); poly(methylmethacrylate) stabilized by 
Coulombic repulsions (PMMA1), or by steric repulsions (PMMA2); Silica particles stabilized 
by Coulombic repulsions. Empty symbols: the viscosities were calculated using Fischer 
theory. Full symbols: calculated by the GSE equation. 

(2003). This discrepancy between micro- and macrorheology in the study of monolayers 
seems to be a rather general situation (Schmidt et al., 2000; Khair & Brady, 2005; Oppong & 
de Bruyn, 2010; Lee et al., 2010) and no clear theoretical answer has been found so far. 
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4. Conclusions 
The set of microrheological techniques offer the possibility of studying the rheology of very 
small samples, of systems which are heterogeneous, and facilitate to measure the shear 
modulus over a broad frequency range. Particle tracking techniques are especially well 
suited for the study of the diffusion of microparticles either in the bulk or at fluid interfaces. 
Different types of mean squared displacements, MSD, (one-particle, two-particle) allow one 
to detect spatial heterogeneities in the samples. Even though good agreement has been 
found between micro- and macrorheology (at least when two-particle MSD is used) in bulk 
systems, the situation is still not clear for the case of fluid interfaces, where the shear surface 
microviscosity is much smaller than the one measured with conventional surface 
rheometers. 
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1. Introduction 
Particle size and particle size distribution play an important role in many fields such 
cosmetic, food, textile, explosives, sensor, catalysis and pharmaceutics among others.  Many 
properties of industrial powdered products can be adjusted by changing the particle size 
and particle size distribution of the powder. The conventional methods to produce 
microparticles have several drawbacks: wide size distribution, high thermal and mechanical 
stress, environmental pollution, large quantities of residual organic solvent and multistage 
processes are some of them.  
The application of supercritical fluids (SCF) as an alternative to the conventional 
precipitation processes has been an active field of research and innovation during the past 
two decades (Jung & Perrut, 2001; Martín& Cocero, 2008; Shariati &Peters, 2003).Through its 
impact on health care and prevention of diseases, the design of pharmaceutical preparations 
in nanoparticulate form has emerged as a new strategy for drug delivery. In this way, the 
technology of supercritical fluids allows developing micronized drugs and polymer-drug 
composites for controlled release applications; this also meets the pharmaceutical 
requirements for the absence of residual solvent, correct technological and 
biopharmaceutical properties and high quality (Benedetti et al., 1997; Elvassore et al., 2001; 
Falk& Randolph, 1998; Moneghini et al., 2001; Reverchon& Della Porta, 1999; Reverchon, 
2002; Subramaniam et al., 1997; Yeo et al., 1993; Winters et al.,1996), as well as giving 
enhanced therapeutic action compared with traditional formulations (Giunchedi et al., 1998; 
Okada& Toguchi, 1995).  
The revised literature demonstrates that there are two principal ways of micronizing and 
encapsulating drugs with polymers: using supercritical fluid as solvent, the RESS technique 
(Rapid Expansion of Supercritical Solutions); or using it as antisolvent, the SAS technique 
(Supercritical AntiSolvent); the choice of one or other depends on the high or low solubility, 
respectively, of the polymer and drug in the supercritical fluid. 
Although the experimental parameters influences on the powder characteristic as particle 
size and morphologies is now qualitatively well known, the prediction of the powder 
characteristics is not feasible yet. This fact it is due to different physical phenomena 
involved in the SAS process. In most cases, the knowledge of the fluid phase equilibrium is 
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necessary but not sufficient since for similar thermodynamic conditions, different 
hydrodynamics conditions can lead to different powder characteristics (Carretier et al., 
2003).  
So, the technical viability of the SAS process requires knowledge of the phase equilibrium 
existing into the system; the hydrodynamics: the disintegration regimes of the jet; the 
kinetics of the mass transfer between the dispersed and the continuous phase; and the 
mechanisms and kinetics of nucleation and crystal growth. 
From the point of view of thermodynamics, the SAS process must satisfy the requirements 
outlined below. The solute must be soluble in an organic solvent but insoluble in the SCF. 
The solvent must also be completely miscible with the SCF, or two fluid phases would form 
and the solute would remain dissolved or partly dissolved in the liquid-rich phase. Thus, 
the SAS process exploits both the high power of supercritical fluids to dissolve organic 
solvents and the low solubility of pharmaceutical compounds in supercritical fluids to cause 
the precipitation of these materials once they are dissolved in an organic solvent, and thus 
spherical microparticles can be obtained.  
On the other hand, characterization of hydrodynamics is relevant because of it is an 
important step for the success or the failure of the entire process, but with only some 
exception (Dukhin et al., 2005; Lora et al., 2000; Martín& Cocero, 2004), in the models 
developed for the SAS process, the hydrodynamics step received only limited consideration. 
For these reasons, the present review is focused on the investigation of the disintegration 
regime of the liquid jet into the supercritical (SC) CO2. There are many works where 
correlations between the morphologies of the particles obtained in the drug precipitation 
assays and the estimated regimes were established (Carretier et al., 2003; Reverchon et al., 
2010; Reverchon& De Marco, 2011; Tenorio et al., 2009). It was demonstrated that there are 
limiting hydrodynamic conditions that must be overcome to achieve a dispersion of the 
liquid solution in the dense medium; this dispersion must be sufficiently fine and 
homogeneous to direct the process toward the formation of uniform spherical nanoparticles 
and to the achievement of higher yields (Tenorio et al., 2009). 
In this way, Reverchon et al. (Reverchon et al., 2010, Reverchon& De Marco, 2011) tried to 
find a correlation between particle morphology and the observed jet, concluding that 
expanded microparticles were obtained working at subcritical conditions; whereas spherical 
microparticles were obtained operating at supercritical conditions up to the pressure where 
the transition between multi- and single-phase mixing was observed. Nanoparticles were 
obtained operating far above the mixture critical pressure. However, the observed particle 
morphologies have been explained considering the interplay among high-pressure phase 
equilibria, fluid dynamics and mass transfer during the precipitation process, because in 
some cases the hydrodynamics alone is not able to explain the obtained morphologies, 
demonstrating the complexity of SAS processes. Moreover, the kinetics of nucleation and 
growth must also be considered.  

2. Supercritical fluids 
A supercritical fluid can be defined as a substance above its critical temperature and 
pressure. At this condition the fluid has unique properties, where it does not condense or 
evaporate to form a liquid or gas. A typical pressure-temperature phase diagram is shown 
in Figure 1. Properties of SCFs (solvent power and selectivity) can also be adjusted 
continuously by altering the experimental conditions (temperature and pressure). Moreover,  
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Fig. 1. Pressure-temperature phase diagram  

these supercritical fluids have diffusivities that are two orders of magnitude larger than 
those of typical liquids, resulting in higher mass-transfer rates. Supercritical fluids show 
many exceptional characteristics, such as singularities in compressibility and viscosity, 
diminishing the differences between the vapor and liquid phases, and so on. Although a 
number of substances are useful as supercritical fluids, carbon dioxide has been the most 
widely used. Supercritical CO2 avoids water discharge; it is low in cost, non-toxic and non-
flammable. It has low critical parameters (304 K, 73.8 bar) and the carbon dioxide can also be 
recycled (Özcan et al., 1998).  

3. Precipitation with SCF 
The supercritical fluid technology has emerged as an important alternative to traditional 
processes of generation of micro and nanoparticles, offering opportunities and advantages 
such as higher product quality in terms of purity, more uniform dimensional characteristics, 
a variety of compounds to process and a substantial improvement on environmental 
considerations, among others.  
Previously, it was discussed that the different particle formation processes using SCF are 
classified depending on how the SCF behaves, i.e., the supercritical CO2 can play the role as 
antisolvent (AntiSolvent Supercritical process, SAS) or solvent (RESS process). 
In the facilities of University of Cádiz, amoxicillin and ampicillin micronization have been 
carried out by SAS process (Montes et al., 2010, 2011a; Tenorio et al., 2007a, 2007b, 2008). 
Several experiments designs to evaluate the operating conditions influences on the particle 
size (PS) and particle size distribution (PSD) have been made. Pressures till 275 bar and 
temperatures till 338K have been used and antibiotic particle sizes have been reduced from 
5-60 µm (raw material) to 200-500 nm (precipitated particles) (Figure 2).  
The concentration was the factor that had the greatest influence on the PS and PSD. An 
increase in the initial concentration of the solution led to larger particles sizes with a wider 
distribution. Moreover, ethyl cellulose and amoxicillin co-precipitation has been carried out 
by SAS process (Montes et al., 2011b). SEM images of these microparticles are shown in 
Figure 3. It was noted that increasing temperature particle sizes were increased. Anyway, 
SEM images are not accurate enough to observe the distribution of both compounds  
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Fig. 2. SEM images of commercial a) amoxicillin and b) ampicillin, c) precipitated 
amoxicillin (Montes et al., 2010) and d) precipitated ampicillin (Montes et al., 2011a) 

 

   
Fig. 3. SEM images of amoxicillin ethyl cellulose co-precipitated (Montes et al., 2011b). 

because all the active substance could be situated on the surface of these microspheres 
and/or into the core. So, X-ray photoelectron spectroscopy (XPS) was used to determine the 
success of the encapsulation process by the chemical analysis of the particles on the 
precipitated surface (Morales et al., 2007). In this case, the elements that differentiate 
amoxicillin from ethyl cellulose are sulphur (S) and nitrogen (N) atoms. Therefore, these 
elements could indicate the location of the drug in the precipitated powders. On the other 
hand, amoxicillin delivery studies in simulated fluids from the co-precipitated obtained 
were carried out .The XPS spectra results were related to these drug delivery experiments 
and it was probed that the release of amoxicillin from precipitates in which N and S were 

b) d)

308K 338K 323K 

c)a) 
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present on the surface is faster than in cases these elements were not. Anyway, all the co-
precipitated materials allowed a slower drug release rate than pure drug. 
On the other hand, in the RESS method, the sudden expansion of supercritical solution 
(solute dissolved in supercritical carbon dioxide) via nozzle and the rapid phase change at 
the exit of the nozzle cause a high super-saturation, thus causing very rapid nucleation of 
the substrate in the form of very small particles that are collected from the gas stream. 
Hence, the conditions inside the expansion chamber are a key factor to control particle size 
and the particles grow inside the expansion chamber to their final size. This result clarifies 
the influence of two important process parameters on particle size. Both, a shorter residence 
time and, hence, less time available for particle growth as well as a higher dilution of the 
particles in the expansion chamber result in smaller particles. 

3.1 Parameters influence on hydrodynamic 
Mass transfer is one of the key factors that control the particle size in the SAS process. This is 
influenced by both the spray hydrodynamics of the organic solution and the 
thermodynamic properties of the supercritical fluid phase.  
In the last years, the hydrodynamic of the SAS process has been the subject of several 
papers. Most authors face up to this problem considering that the jet of organic solvent 
behaves like a liquid jet injected into a gas,  allowing to apply the classic theory of jet break-
up. This theory could be applied successfully at subcritical conditions, below the mixture 
critical point solvent-CO2, where there is surface tension. The mixture critical point denotes 
the limit of the two-phase region of the phase diagram. In other words, this is the point at 
which an infinitesimal change in some thermodynamic variable such as temperature or 
pressure will lead to separation of the mixture into two distinct phases.  
However, in supercritical conditions, above the critical point of the mixture organic solvent 
and CO2, it is not possible to distinguish droplets nor interfaces between the liquid solution 
and the phase of dense CO2 gas. Surface tension decreases to zero in a shorter distance than 
characteristic break-up lengths. Thus, the jet spreads forming a gaseous plume and will be 
characterized by the degree of turbulence associated with the vortices produced in the SC 
CO2 (Chehroudi et al., 2002; Kerst et al., 2000; Reverchon et al., 2010). Lengsfeld et al. were 
the first group that investigated fluid dynamics of the SAS process, studying the evolution 
and disappearance of the liquid surface tension of fluids injected in supercritical carbon 
dioxide. They concluded that a gas-like jet is formed after the jet break-up (Lengsfeld et al., 
2000). In this way, Kerst et al. determined the boundaries between the different modes and 
they noted a strong interdependence between mass transfer and fluid dynamics (Kerst et al., 
2000). 
In the SAS related literature there is a general agreement about the flow regimes observable 
when a liquid is injected in a vessel. The way in which the liquid solution is dispersed in the 
CO2 when the operating conditions are below the mixture critical point (MCP), which is 
strongly influenced by the operating pressure and the flow rate of liquid solution at fixed 
temperature, can be described according to one of the following four regimes: 1) the 
dripping mode, which requires lower flow speed so that drops can detach themselves from 
the orifice, 2) the Rayleigh break up regime, which is characterized by a rupture of the jet in 
the form of monodisperse droplets, 3) the sine wave break up regime, in which a helicoidal 
oscillation of the jet occurs, leading to its rupture into droplets with a polydisperse 
distribution, and 4) atomization, in which the jet is smooth when it leaves the orifice, until it 
reaches the zone of highly chaotic rupture where a cone of atomized liquid is formed. 
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When SAS is performed at supercritical conditions a transition between multi-phase and 
single-phase mixing is observed by increasing the operating pressure. Single-phase mixing 
is due to the very fast disappearance of the interfacial tension between the liquid solvent 
and the fluid phase in the precipitator. The transition between these two phenomena 
depends on the operating pressure, but also on the viscosity and the surface tension of the 
solvent. Reverchon et al. demonstrates that in the case of dimethyl sulfoxide (DMSO) at 
pressures larger than the MCP a progressive transition exists between multi-phase and 
single-phase mixing, but is not observed, even for pressures very close to the MCP, in the 
case of acetone (Reverchon et al., 2010). In the dripping mode, the droplet size decrease with 
increase in pressure operation due to a corresponding decrease in the interface tension, so 
the initial droplet size can be manipulated by small changes in the pressure of CO2 (Lee et 
al., 2008).  
However, in the Rayleigh disintegration mode, the droplet size is weakly dependent on the 
interface tension of the system and is proportional to the diameter of the jet. In the dripping 
mode, the size and shape of the drops become highly dependent on the nozzle exit 
condition. 
Sometimes, the transition between multi-phase (formation of droplets after jet break-up) and 
single-phase mixing (no formation of droplets after jet break-up) could not be located at the 
pressure of the mixture critical point. Dukhin et al. (Dukhin et al., 2003) and Gokhale et al. 
(Gokhale et al., 2007) found that jet break-up into droplets still takes place at pressures 
slightly above the MCP. Due to the non-equilibrium conditions during mixing, there is a 
dynamic (transient) interfacial tension that decreases between the inlet of the liquid and its 
transformation to a gas-like mixture. The transition between these multi-phase and single-
phase mixing depends on the operating pressure, but also on the viscosity and the surface 
tension of the solvent.  
Not only the thermodynamics but also the nozzle device or liquid solution flow rate will 
influence on the observed regime. The kind of injection device and its orifices diameter will 
determine the chosen liquid solution flow rate to get a successful jet break up. In this way, in 
a previous work, when the 200 µm diameter nozzle was used with a liquid flow rate of 
1mL/min, the solution was not atomized, and we did not obtain any precipitation (Tenorio 
et al., 2009). 
A lot of parameters control the precipitation process and many particle morphologies have 
been observed. As it was commented before, the kind of injection device used (and its 
efficiency), can strongly influence the precipitation process. The objective of these devices in 
SAS processing is to produce a very large contact surface between the liquid and the fluid 
phase, to favour the mass transfer between the antisolvent and the liquid solvent inducing 
jet break-up and atomization of the liquid phase.  
Various injection devices to produce liquid jet break-up have been proposed in the 
literature. Yeo et al. (Yeo et al., 1993) proposed the adoption of a nozzle and tested various 
nozzle diameters ranging from 5 to 50 μm. Moussa et al. (Moussa et al., 2005) showed that 
the pressure distribution during the expansion of the supercritical fluid is a function of the 
nozzle length and diameter. Other authors used small internal diameter capillaries (Dixon et 
al., 1993; Randolph et al., 1993). Coaxial devices have also been proposed: in the SEDS 
process (solution enhanced dispersion by supercritical fluids) a coaxial twin-fluid nozzle to 
co-introduce the SCF antisolvent and solution is used (Bałdyga et al., 2010; He et al., 2010; 
Mawson et al., 1997; Wena et al., 2010). Complex nozzles geometries have also been tested 
carrying out a comparative study of the nozzle by computational fluid dynamics (Balabel et 
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al., 2011; Bouchard et al., 2008). Petit-Gas et al. found that for the lowest capillary internal 
diameter studied, there were particles with differences morphologies according to the jet 
velocity. For the lowest jet velocity, irregular morphology was obtained, and for highest jet 
velocity spherical morphology was obtained (Petit-Gas et al., 2009). However, for the 
highest capillary internal diameter experiments, particles morphology difference was less 
important. Particles were quasi-spherical, to a lesser extent for the smallest jet velocity. Once 
more time it was demonstrated the parameters interrelation in SAS process and its great 
complexity. Not only the kind of nozzle but also the nozzle relative position to CO2 inlet 
must be taken into account. In this way, Martin & Cocero studied the differences on 
hydrodynamics and mixing when CO2 is not introduced through the concentric annulus, 
but through a different nozzle, which is placed relatively far from the nozzle of the organic 
solution. Since the inlet velocity of CO2 is much lower than the inlet velocity of the solution, 
this flow has a relatively small influence on hydrodynamics and mixing. However, if CO2 is 
not introduced through the annulus, the fluid that diffuses into the jet is no longer almost 
pure CO2, but fluid from the bulk fluid phase, which has some amount of organic solvent. 
This greatly reduces the supersaturation and bigger particles are formed (Martin & Cocero, 
2004). 
Moreover, these different unstable modes (Rayleigh break up, sine wave break up and 
atomization) are controlled by several competing effects: capillary, inertial, viscous, gravity 
and aerodynamic effects (Petit-Gas et al., 2009). The predominance of each effect has been 
discussed in several works (Badens et al., 2005; Carretier et al., 2003; Kerst et al., 2000). 
Reynolds number gives a measure of the ratio of inertial forces to viscous forces. For the 
lower Reynolds numbers, Rayleigh regime is observed and surface tension is the chief force 
controlling the break-up of an axisymmetrical jet. For higher Reynolds numbers, the inertial 
forces compete with the capillary forces. There is a lateral motion in the jet break-up zone 
which leads to the formation of an asymmetrical jet, which can be either sinuous or 
helicoidal. Finally, when the flow rate goes beyond a certain value, the aerodynamic effects 
become quite strong and the jet is atomised. Another dimensionless number frequently used 
to describe jet fluid dynamics is the Ohnesorge (Oh) number that relates the viscous and the 
surface tension force by dividing the square root of Weber number by Reynolds number 
(Badens et al., 2005; Czerwonatis, 2001; Kerst et al., 2000). 
In this way, taking into account the critical atomization velocity defined as the velocity 
corresponding to the boundary between the asymmetrical mode and the atomization mode, 
it is possible to tune the process towards one or another regime. Moreover this critical 
velocity seems to be dependent on CO2 density. Badens et al. observed a decrease in this 
critical jet velocity when the CO2 continuous phase density increases (Badens et al., 2005). 
Badens et al. and Czerwonatis et al. found out the predominant effect of the continuous 
phase properties on jet break-up, especially in the asymmetrical and direct atomization 
modes because of the aerodynamic forces preponderance (Badens et al., 2005; Czerwonatis 
et al., 2001). However Petit-Gas et al. concluded that variations of the continuous phase 
properties had no effects on the transition velocity in the studied conditions (Petit-Gas et al., 
2009). 

3.2 Morphology 
Some authors attempted to connect the observed flow or mixing regimes to the morphology 
of the precipitated particles. Lee et al. injected a solution of dichloromethane (DCM) and 
poly lactic acid (PLA) at subcritical conditions in the dripping and in the Rayleigh 
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disintegration regimes and observed the formation of uniform PLA microparticles (Lee et 
al., 2008). Other authors (Chang et al., 2008; Gokhale et al., 2007; Obrzut et al., 2007; 
Reverchon et al., 2008) did not find relevant differences in the various precipitates obtained. 
Particularly, PLA morphologies showed to be insensitive to the SAS processing conditions 
(Randolph et al., 1993). This characteristic fact could be assigned to the high molecular 
weights and the tendency to form aggregated particles because of the reduction of the glass 
transition temperature in SC-CO2. 
At subcritical conditions the interfacial tension between the injected liquid and the bulk phase 
never goes to zero and a supercritical mixture is not formed between the liquid solvent and 
CO2. The droplets formed during atomization are subjected to a very fast internal formation of 
a liquid/CO2 mixture. Due to a high solubility of CO2 in pressurized organic liquids and a 
very poor evaporation of organic solvents into the bulk CO2, the droplets expand. During 
these processes, the interfacial tension allows the droplets to maintain its spherical shape, even 
when the solute is precipitated within the droplet. Saturation occurs at the droplet surface and 
solidification takes place with all solutes progressively condensing on the particle internal 
surface. The final result is the formation of a solid shell. 
This kind of particles has also been observed in other SAS works (Reverchon et al., 2008). It 
has been also obtained expanded hollow particle at same conditions. The different surface 
morphologies can depend on different controlling mass transfer mechanisms, as suggested 
by Duhkin et al. (Duhkin et al., 2005). 
Operating conditions above the MCP, from a thermodynamic point of view, are 
characterized by zero interfacial tension. But, the liquid injected into the precipitator, before 
equilibrium conditions are obtained, experiences the transition from a pure liquid to a 
supercritical mixture. Therefore, interfacial tension starts from the value typical of the pure 
liquid and progressively reduces to zero. This fact means that droplets formed after jet 
break-up (whose presence indicates in every case the existence of an interfacial tension) are 
formed before the disappearance of the interfacial tension. In other words, the time of 
equilibration is longer than the time of jet break-up and spherical microparticles instead of 
nanoparticles can be obtained. 

3.3 Visualization techniques 
Many researchers have used imaging and visualization techniques to study jet flows, 
atomization, and droplets; a number of systems are reviewed in the literature (Bell et al., 
2005; Chigier et al.,1991). Jet lengths and spray widths ranging to milimeters and drop and 
particle sizes ranging to micrometers must be taking into account in order to select imaging 
system components.  
Several studies used particle and droplet visualization in supercritical fluids (Badens et al., 
2005; Gokhale et al.,2007; Kerst et al.,2000; Lee et al.,2008; Mayer & Tamura,1996; Obrzut et 
al.,2007; Randolph, et al., 1993; Shekunov et al., 2001).  
The optical technique described in these works provides the ability to visualize mixing 
occurring between two fluids with different refractive indices. For instance, shadowgraphy 
is an optical method to obtain information on non-uniformities in transparent media, 
independently if they arise by temperature, density or concentration gradients. All of these 
inhomogeneities refract light which causes shadows. 
Although for SAS precipitation, microscopy-base imaging offers the advantage of examining 
the dynamic process that leads to particle formation, the presence of particles smaller than 
two microns complicates an already difficult task of imaging an injection process.  
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The ability to identify and characterize these small formations drives future system 
improvements, including lighting enhancements laser-induced fluorescence, and higher 
spatial resolution cameras. In this way Reverchon et al. used light scattering technique to 
clearly differentiate between an atomized very droplet laden spray and a dense “gas-
plume”, limitation which cannot be gained by applying optical techniques due to the fact 
that both the droplet laden spray and the dense “gas-plume” result in a dark shadow 
(Reverchon et al., 2010). 
 On the other hand, extensive research has been done using scanning electron microscopy 
(SEM) to evaluate the size and morphology of particles formed under supercritical 
conditions (Armellini& Tester, 1994; Bleich et al., 1994; Mawson et al. 1997; Randolph et al., 
1993; Shekunov et al., 2001;). A limitation of SEM analysis is that it is applied to particles 
after they have been removed from the dynamic system.  

4. A particular case: Ampicillin SAS precipitation 
In our research group a study was carried out to establish a correlation between the 
morphologies of the particles obtained in the ampicillin precipitation assays and the 
estimated regimes. This correlation would be an ideal tool to establish the limiting 
hydrodynamic conditions for the success of the test in order to define the successful 
experiments; that is, the appropriate conditions to orientate the process toward the 
formation of uniform spherical nanoparticles instead of irregular and larger-sized particles, 
for the solute-solvent-SC CO2 system studied (Tenorio et al.,2009). 
A series of ampicillin precipitation experiments by the SAS technique, utilizing N-methyl-
pyrrolidone (NMP) as the solvent and CO2 as the antisolvent, under different operating 
conditions were carried out. Two nebulizers, with orifice diameters of 100 and 200 μm, 
respectively were used.  
A pilot plant, developed by Thar Technologies® (model SAS 200) was used to carry out all 
the experiments. A schematic diagram of this plant is shown in Figure 4. The SAS 200 
system comprises the following components: two high-pressure pumps, one for the CO2 (P1) 
and the other for the solution (P2), which incorporate a low-dead-volume head and check 
valves to provide efficient pumping of CO2 and many solvents; a stainless steel precipitator 
vessel (V1) with a 2L volume consisting of two parts, the main body and the frit, all 
surrounded by an electrical heating jacket (V1-HJ1); an automated back-pressure regulator 
(ABPR1) of high precision, attached to a motor controller with a position indicator; and a 
jacketed (CS1-HJ1) stainless steel cyclone separator (CS1) with 0.5L volume, to separate the 
solvent and CO2 once the pressure was released by the manual back-pressure regulator 
(MBPR1).The following auxiliary elements were also necessary: a low pressure heat 
exchanger (HE1), cooling lines, and a cooling bath (CWB1) to keep the CO2 inlet pump cold 
and to chill the pump heads; an electric high-pressure heat exchanger (HE2) to preheat the 
CO2 in the precipitator vessel to the required temperature quickly; safety devices (rupture 
discs and safety valve MV2); pressure gauges for measuring the pump outlet pressure (P1, 
PG1), the precipitator vessel pressure (V1, PG1), and the cyclone separator pressure (CS1, 
PG1); thermocouples placed inside (V1-TS2) and outside (V1-TS1) the precipitator vessel, 
inside the cyclone separator (CS1-TS1), and on the electric high pressure heat exchanger to 
obtain continuous temperature measurements; and a FlexCOR Coriolis mass flowmeter 
(FM1) to measure the CO2 mass flow rate and another parameters such as total mass, 
density, temperature, volumetric flow rate, and total volume. 
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Fig. 4. Schematic diagram of the pilot plant 

The pendant droplet method, as introduced by Andreas and Tucker, was used to determine 
the interfacial tension between NMP and SC CO2 (Andreas&Tucker, 1938).This method, and 
its application to high pressures and temperatures, are comprehensively described by Jaeger 
(Jaeger et al., 1996). A commercial CCD video technique allows recording of droplet shapes 
for subsequent video image processing. 
Rayleigh breakup, sinusoidal wave break up, and atomization regimes are seen to be clearly 
differentiated by representing graphically the Reynolds number against Ohnesorge number 
Here, the forces of inertia of the liquid phase (pressure gradient), the forces of capillarity 
(surface tension), and those of viscosity of the liquid phase (friction) are taken into account, 
but the force of gravity is considered to be negligible. 
Two differentiated types of morphology can be identified in the precipitated experiments: 
spherical nanoparticles of ampicillin that are obtained from a fine precipitate with foamy 
texture, and particles of ampicillin with irregular forms and larger size, which are 
characteristic of the precipitate formed by aggregates, compact films, and rods (Figure 5). 
The aim of the work is to explain, from the estimation of the different disintegration regimes 
as a function of the physicochemical properties and of the velocity of the jet, the two 
different morphologies obtained in the ampicillin precipitation experiments for a specific 
range of operating conditions. Thus it should be possible to specify the hydrodynamic 
conditions for orientating the process toward the formation of uniform spherical 
nanoparticles rather than larger size irregular particles. 
The morphology of the precipitate obtained at low pressure was supposed to be in 
accordance with the Rayleigh estimated regime, since droplets with a diameter of 
approximately twice the diameter of the orifice would be produced; (Badens et al., 2005)  
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Fig. 5. Effect of operating pressure on microstructure of ampicillin powder obtained by the 
SAS experiments (Tenorio et al., 2009).  

then, because sufficient contact area would not be generated, the liquid phase does not 
evaporate in the dense phase of the CO2. Instead, the liquid droplets accumulate in the filter, 
where the precipitate is obtained by the drying action of the CO2.  
In contrast, for higher pressures, the presence of a precipitate occurring as aggregates in the 
filter may be explained by the existence of significant mechanisms that stabilize the liquid 
jet. These important mechanisms of stabilization may be associated with the existence of the 
dynamic interfacial tension (Dukhin et al., 2003 ).Therefore, the so-called “gaseous plume” 
or “gas-like jet”, which is characteristic of states of complete miscibility of mixtures (above 
their MCP),would not be produced, even at 150 bar. 
The influence of the mean velocity of the jet of liquid solution was also analyzed. The liquid 
solution flow rate from 1 mL/min to 5 mL/min causes the jet to disintegrate, passing 
through the three possible regimes: Rayleigh, sine wave break-up and atomization. The 
lowest flow rate tested (1 mL/min), which is equivalent to a jet velocity of 0.5 m/s (200 μm 
nozzle diameter), led to an unsatisfactory test result, which may be in agreement with the 
Rayleigh-type estimated regime; this is because the droplets that formed would not generate 
sufficient contact area to produce saturation while they are in motion, and, consequently, 
ampicillin is not precipitated. When the liquid solution flow rate is increased to 2 mL/min a 
dispersion of the sine wave breakup type is estimated. Considering that a polydisperse  
 

 
 

Fig. 6. SEM images  showing the microstructure of the ampicillin powder obtained by SAS 
experiment with 5ml/min (at 180 bar, 328 K, and 200 μm) (Tenorio et al., 2009). 
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distribution of droplets is produced in this regime, it is very well correlated with the 
experimental obtained results (Tenorio et al., 2009). 
When the flow rate is increased to 3 mL/min, it is estimated that the transition is complete, 
and the liquid is atomized. The large quantity of fine precipitate with foamy texture 
obtained both on the walls and accumulated in the filter (characteristic of nanoparticles) 
would have originated from the fully atomized and homogeneous dispersion that is 
occurring in the precipitation chamber. With 5 mL/min it was obtained similar results in 
accordance with the estimated atomization regime (Figure 6). 

5. Conclusions 
The hydrodynamics of the SAS process has been revised. Nozzle device, liquid flow rate 
and pressure effects on hydrodynamics have been taken into account. Flow regimes 
observable in the SAS related literature have been described. Dripping mode is simply due 
to the use of liquid flow rates that are too low to produce a continuous liquid flow and do 
not produce atomization. Rayleigh breakup, sinusoidal wave break up, and atomization 
regimes and, particularly their competition at some process conditions require a detailed 
analysis. The ability to identify and characterize these regimes drives future system 
improvements, including lighting enhancements laser-induced fluorescence, and higher 
spatial resolution cameras. 
Morphology of the precipitated particles can be related to flow or mixing regimes. In the 
ampicillin case, two differentiated types of morphology can be identified in the precipitated 
experiments: spherical nanoparticles of ampicillin that are obtained from a fine precipitate 
with foamy texture, and particles of ampicillin with irregular forms and larger size, which 
are characteristic of the precipitate formed by aggregates, compact films, and rods. It has 
been correlated the morphologies of the particles obtained in the ampicillin precipitation 
assays and the estimated regimes as a function of the physicochemical properties and of the 
velocity of the jet, for a specific range of operating conditions. 
However, the results from the application of these correlations cannot explain the 
morphologies of the precipitates obtained in some experiments. This fact can be due to 
important stabilization mechanisms as dynamic interfacial tension 
Due to the great complexity of the SAS process, factors such as the ternary phase 
equilibrium, matter transfer between the phases, and the kinetics of nucleation and growth 
need to be considered, in addition to the limiting hydrodynamic conditions. 
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1. Introduction 
The absorption of photons by a molecule leads to its excitation. An electronically excited 
molecule can lose its energy by emission of ultraviolet, visible, infrared radiation or by 
collision with the surrounding matter. Luminescence is thus the emission of photons from 
excited electronic energy levels of molecules. The energy difference between the initial and 
the final electronic states is emitted as fluorescence or phosphorescence (Lakowicz, 2006). 
Fluorescence is a spin-allowed radiative transition between two states of the same 
multiplicity (e.g., S1 → S0) whereas; phosphorescence is a spin-forbidden radiative transition 
between two states of different multiplicity (e.g., T1 → S0).  
The mechanisms by which electronically excited molecules relax to ground state are given 
by the Jablonski diagram as shown in Fig. 1. The absorption of a photon takes a molecule 
from ground state (singlet state, S0) to either first excited state (singlet state, S1) or second  
 

 
Fig. 1. Jablonski diagram of transitions among various electronic energy levels 
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excited state (S2). The excited molecule then relaxes to the lowest vibronic level of the first 
excited state through internal conversion (IC), which generally occurs within 10-12 s or less. 
Since fluorescence lifetimes are typically near 10-8 s, IC is generally complete prior to 
emission. Now it can relax from the singlet excited state to the ground state via three 
mechanisms. First by emitting a photon (radiative process), second without emitting photon 
(nonradiative mechanism) and third it goes to a triplet state (T1) by intersystem crossing 
(ISC) which also is a nonradiative process. The transition from triplet (T1) to ground singlet 
state is forbidden and hence is a very slow process relative to fluorescence. Emission from T1 
is called phosphorescence and generally is shifted to longer wavelength relative to the 
fluorescence. 
In fluorescence spectroscopy the observed spectral intensity is a function of two variables: 
the excitation wavelength (λex) and the emission wavelength (λem). The fluorescence property 
of a compound is conventionally studied by examining both the excitation spectrum and the 
emission spectrum. The intensity vs. wavelength plot of the fluorescence spectrum obtained 
is characteristic of a fluorophore and sensitive to its local surrounding environment. It is 
consequentially used to probe structure of the local environment. Generally, the wavelength 
of maximum fluorescence intensity is shifted to longer wavelength relative to the 
wavelength of its absorption maximum. The difference between these two wavelengths, 
known as Stokes’ shift, arises because of the relaxation from the initially excited state to the 
‘ground’ vibronic level of S1 which involves a loss of energy. Further loss of energy is due to 
the transitions from S1 to higher vibrational levels of the ground state S0. The Stokes’ shift 
further increases because of general solvent effects. The energy difference between the 
absorption maximum (νa) and the emission maximum (νf) is given by Lippert equation 
(Birks, 1970) in which the energy difference (νa-νf) of a fluorophore as a function of the 
refractive index (n) and dielectric constant (ε) of the solvent is related as  

 
2 * 2

2 3
2 1 1 ( )

2 1 2 1a f
n

const
hc n a

ε μ μν ν
ε

 − − −− ≈ − + + +  
 (1) 

where h is the Planck’s constant, c the velocity of light and a is the radius of the cavity in 
which the fluorophore resides. Also, μ and μ* are the ground and excited state dipole 
moments, respectively. 
Fluorescence emission is generally independent of excitation wavelength. This is because of 
the rapid relaxation to the lowest vibrational level of S1 prior to emission, irrespective of 
excitation to any higher electronic and vibrational levels. Excitation on the extreme red edge 
of the absorption spectrum frequently results in a red-shifted emission. The red-shift occurs 
because red-edge excitation selects those fluorophores which are more strongly interacting 
with the solvent (solvation dynamics) (Demchenko, 2002). The red-edge effect can also be 
thought as ground state heterogeneity, which is common in most complex systems like a 
probe distribution in microheterogeneous media. In the case of ground state heterogeneity 
or the presence of multiple species in the ground state, the fluorescence emission spectrum 
is dependent on the excitation wavelength and the fluorescence excitation spectrum is 
dependent on the emission wavelength. Also fluorescence excitation spectrum observed for 
a given emission wavelength differs from that of the absorption spectrum for heterogeneous 
system. The large spectral width of the emission spectrum compared to absorption spectral 
width is also due to the presence of multiple species in the excited state. Fluorescence 
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emission spectrum is generally a mirror image of the absorption spectrum (S0 to S1 
transition).  

1.1 Steady-state and time resolved fluorescence 
Fluorescence measurements can be broadly classified into two types of measurements: 
steady-state and time-resolved. Steady-state measurements, the most common type, are 
those performed with constant illumination and observation. The sample is illuminated 
with a continuous beam of light, and the intensity or emission spectrum is recorded as 
function of wavelength. When the sample is first exposed to light steady state is reached 
almost immediately. Because of the ns timescale of fluorescence, most measurements 
employ steady-state method. The second type of measurement is time-resolved method 
which is used for measuring intensity decays or anisotropy decays. For these measurements 
the sample is exposed to a pulse of light, where the pulse width is typically shorter than the 
decay time of the sample. The intensity decay is recorded with a high-speed detection 
system that permits the intensity or anisotropy to be measured on the ns timescale.  

1.2 Fluorescence anisotropy 
The photoselection of fluorescent probe by polarized light offers the opportunity to study 
some relevant processes occurring at molecular level in heterogeneous systems. The 
fluorescence, emitted from the samples excited with polarized light, is also polarized. This 
polarization is due to the photoselection of the fluorophores according to their orientation 
relative to the direction of the polarized excitation. This photoselection is proportional to the 
square of the cosine of the angle between the absorption dipole of the fluorophore and the 
axis of polarization of the excitation light. The orientational anisotropic distribution of the 
excited fluorophore population relaxes by rotational diffusion of the fluorophores and 
excitation energy transfer to the surrounding acceptor molecule. The polarized fluorescence 
emission becomes depolarized by such processes. The fluorescence anisotropy 
measurements reveal the average angular displacement of the fluorophore, which occurs 
between absorption and subsequent emission of a photon. The degree of polarization, P, and 
steady state fluorescence anisotropy r, are thus respectively given by equations (Lakowicz, 
2006) 
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where ||I  and I⊥  represent the fluorescence intensities when the orientation of the emission 
polarizer is parallel and perpendicular to the orientation of the excitation polarizer, 
respectively. The fluorescence anisotropy (r) is a measure of the average depolarization 
during the lifetime of the excited fluorophore under steady-state conditions. A steady-state 
observation is simply an average of the time-resolved phenomena over the intensity decay 
of the sample. But the time resolved measurements of fluorescence anisotropy using 
ultrafast polarized excitation source (laser) give an insight into the time dependent 
depolarization. The time dependent fluorescence anisotropy decay, r(t), is defined as 
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where ||( )I t and ( )I t⊥  are the fluorescence intensity decays collected with the polarization 
of the emission polarizer maintained parallel and perpendicular to the polarization of the 
excitation source, respectively. For a fluorophore in a sample solvent, the fluorescence 
depolarization is simply due to rotational motion of the excited fluorophore and the decay 
parameters depend on the size and shape of the fluorophore. For spherical fluorophores, the 
anisotropy decay is a single exponential with a single rotational correlation time and is 
given by (Lakowicz, 2006) 

 ( ) exp( / )0r t r t rτ= −  (5) 

where 0r  is the initial anisotropy (anisotropy at time t=0 or anisotropy observed in the 
absence of any depolarizing processes) and rτ  is the rotational correlation time. The initial 
anisotropy 0r  is related to the angle (θ) between the absorption and emission dipoles of the 
fluorophore under study as 
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2 3cos (θ) 1
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where the value 0r  can vary between 0.4 and –0.2 as the angle (θ) varies between 00  and 
090 respectively. The rotational correlation times rτ  of the fluorophore is governed by the 

viscosity ( )η , temperature ( )T of the solution and the molecular volume ( )V  of the 
fluorophore. This is given by Stokes-Einstein relation (Fleming, 1986) as shown below: 

 r
V

kT
ητ =  (7) 

where k is the Boltzmann constant. 
The relation between the steady-state anisotropy (r), initial anisotropy ( 0r ), rotational 
correlation time ( rτ ) and fluorescence lifetime ( fτ ) is given by Perrin equation as follows 
(Lackowicz, 1983) 

 0 1 f

r

r
r

τ
τ
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The Perrin equation is very useful in obtaining the correlation time without the 
measurement of polarization dependent fluorescence decays [ ||( )I t and ( )I t⊥ ]. The theory 
developed for more complicated shapes of the fluorophore show that a maximum of five 
exponentials are enough to explain the fluorescence anisotropy decay (Steiner, 1991). 

2. Introduction to rotational dynamics 
Understanding solute-solvent interaction has been of great relevance in physico-chemical 
processes due to the importance of these interactions in determining properties such as 
chemical reaction yield and kinetics or the ability to isolate one compound from another. 
Interactions between the solutes and their surrounding solvent molecules are difficult to 
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resolve because, unlike in solids, the spatial relationship between the molecules are not fixed 
on time scales that can be accessed using structural measurements such as X-ray diffraction 
or multidimensional NMR spectrometry. Intermolecular interactions in the liquid phase are 
more complex than those in gas phase because of their characteristic strength, the property 
that gives rise to the liquid phase and at the same time prevents a simple statistical 
description of collisional interactions from providing adequate insight (Fleming, 1986).  
Regardless of almost three and a half decades of continuous investigation, the details of 
solute-solvent interactions, particularly in polar solvent systems, remain to be understood in 
detail. Most investigations of intermolecular interactions in solution have used a “probe” 
molecule present at low concentration in neat or binary solvent systems. Typically, a short 
pulse of light is shone to establish some non-equilibrium condition in the ensemble of probe 
molecules, with the object of the experiment being to monitor the return to equilibrium. 
These studies have included fluorescence lifetime, molecular reorientation (Eisenthal, 1975; 
Shank and Ippen, 1975; von Jena and Lessing, 1979a; Sanders and Wirth, 1983; Templeton et 
al., 1985; Blanchard and Wirth, 1986; Templeton and Kenney-Wallace, 1986; Blanchard, 1987, 
1988, 1989; Blanchard and Cihal, 1988; Hartman et al., 1991; Srivastava and Doraiswamy, 
1995; Imeshev and Khundkar, 1995; Dutt, et al., 1995; Chandrashekhar et al., 1995; Levitus et 
al., 1995; Backer et al., 1996; Biasutti et al., 1996; Horng et al., 1997; Hartman et al., 1997; 
Laitinen et al., 1997; Singh, 2000; Dutt and Raman, 2001; Gustavsson et al., 2003; Dutt and 
Ghanty, 2004; Kubinyi et al., 2006), vibrational relaxation (Heilweil et al., 1986, 1987, 1989; 
Lingle Jr. et al., 1990; Anfinrud et al., 1990; Elsaesser and Kaiser, 1991; Hambir et al., 1993; 
Jiang and Blanchard, 1994a & b, 1995; McCarthy and Blanchard, 1995, 1996) and time-
delayed fluorescence Stokes shift (Shapiro and Winn, 1980; Maroncelli and Fleming, 1987; 
Huppert et al. 1989, 1990; Chapman et al., 1990; Wagener and Richert, 1991; Fee et al., 1991; 
Jarzeba et al., 1991; Yip et al., 1993; Fee and Maroncelli, 1994; Inamdar et al., 1995) 
measurements. Of these, molecular reorientation of molecules in solution has been an 
important experimental and theoretical concept for probing the nature of liquids and the 
interactions of solvents with molecules. This has proven to be among the most useful 
because of the combined generality of the effect and the well-developed theoretical 
framework for the interpretation of the experimental data (Debye, 1929; Perrin, 1936; 
Chuang and Eisethal, 1972; Hu and Zwanzig, 1974; Youngren and Acrivos, 1975; Zwanzig 
and Harrison, 1985). Though, the effect of solute-solvent interactions on the rotational 
motion of a probe molecule in solution has been extensively studied, these interactions are 
generally described as friction to probe rotational motion and can be classified into three 
types. The first category includes short-range repulsive forces, which dominate 
intermolecular dynamics during molecular collisions. These interactions are present in all 
liquids and lead to viscous dissipation, which is well described by hydrodynamic theories 
(Fleming, 1986). The second category includes long-range electrostatic interactions between 
a charged or dipolar probe and polar solvent molecules. As the solute turns, the induced 
solvent polarization can lag behind rotation of the probe, creating a torque, which 
systematically reduces the rate of rotational diffusion. This effect, termed dielectric friction, 
arises from the same type of correlated motions of solvent molecules, which is responsible 
for the time dependent Stokes’ shift (TDSS) dynamics of fluorescent probes (van der Zwan 
and Hynes, 1985; Barbara and Jarzeba, 1990; Maroncelli, 1993). The third category includes 
specific solute-solvent interactions. Hydrogen bonding is probably the most frequently 
encountered example of this kind. Strong hydrogen bonds will lead to the formation of 
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solute-solvent complexes of well-defined stoichiometry. These new, larger species can 
persist in solution for fairly long times and will rotate more slowly than the bare solute. 
Formation and breakage of weak H binds occurring on time scales faster than probe rotation 
will provide a channel for rotational energy dissipation giving rise to additional friction. 
The theoretical interest in the study of rotational reorientation kinetics of molecules in 
liquids arises from the fact that it provides information about the intermolecular interaction 
in the condensed phase. However, the theoretical modeling of molecular reorientation in 
liquids and its correlation with experimental data is still far from satisfactory. Thus far, two 
kinds of approaches have been employed in understanding the rotational dynamics. In the 
first approach, binary collision approximation has been used to explain the rotational 
dynamics. With this approach, kinetic theory model for rotational relaxation has been 
employed for rough sphere fluids (Widom, 1960; Rider and Fixman, 1972; Chandler, 1974) 
and for smooth convex bodies (Evans et al., 1982; Evans and Evans, 1984; Evans, 1988). 
Evans model along with Enskog equation for viscosity has been employed to express 
rotational reorientation time (τr) as a function of the solvent viscosity. However, explaining 
rotational dynamics from such a molecular point of view is severely constrained on account 
of multibody interaction in a fluid. For real systems the quantitative predictions can be 
made about the variation of τr with solvent viscosity. The second approach is the 
macroscopic approach of understanding the rotational dynamics, where the solvent is 
assumed to be a structureless continuum and the rotational motion of solutes is considered 
Markovian or diffusional. A considerable degree of success on the rotational dynamics 
arises from the Stokes-Einstein-Debye (SED) hydrodynamic theory, which forms the basis of 
understanding molecular rotations of medium sized molecules (few hundred Å3 volumes) 
in liquids (Einstein, 1906;Debye, 1929; Stokes, 1956), according to which the rotational 
reorientation time (τr) of a solute molecule is proportional to its volume (V), bulk viscosity 
(η) of the solvent and inversely related to its temperature (T). 
Rotational dynamics of number of nonpolar and polar solutes have been carried out in 
homologous series of polar and nonpolar solvents. In general, the experimentally measured 
reorientation times of most of the nonpolar probes could be described by the SED theory 
with slip boundary condition. In some cases the reorientation times were found to be faster 
than predicted by the slip boundary condition, a situation termed as subslip behavior. 
However, for a given probe in a homologous series of solvents (alkanes or alcohols) the 
normalized reorientation times (i.e., reorientation times at unit viscosity) decrease as the size 
of the solvent increased. In other words, the reorientation times did not scale linearly with 
solvent viscosity. This behavior, known as the size effects, could not be explained with SED 
theory. Another observation, which the SED theory failed to explain, is that the 
experimentally measured reorientation times of nonpolar probes are faster in alcohols than 
in alkanes of similar viscosity. To explain the observed size effects two quasihydrodynamics 
theories have been used. The first one is a relatively old theory proposed by Geirer and 
Wirtz (GW) (1953), which takes into account both the size of the solute as well as that of the 
solvent while calculating the boundary condition. This theory visualizes the solvent to be 
made up of concentric shells of spherical particles surrounding the spherical probe molecule 
at the center. Each shell moves at a constant angular velocity and the velocity of successive 
shells decreases with the distance from the surface of the probe molecule, as though the flow 
between the shells is laminar. As the shell number increases, i.e., at large distances, the 
angular velocity vanishes. Although, the GW theory is successful in predicting the observed 
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size effects in a qualitative way, it could not explain the faster rotation of nonpolar probes in 
alcohols compared to alkanes. The second relatively new quasihydrodynamic theory was 
proposed by Dote, Kivelson and Schwartz (DKS) (1981). The DKS theory not only takes into 
consideration the relative sizes of the solvent and the probe but also the cavities or free 
spaces created by the solvent around the probe molecule. If the size of the solute is 
comparable to the free volumes of the solvent, the coupling between the solute and the 
solvent will become weak which results in reduced friction experienced by the probe 
molecule. 
On the other hand, rotational dynamics of small and medium sized polar solutes dissolved 
in polar solvents experiences more friction than predicted by the hydrodynamic theories. 
This ‘additional friction’ is attributed to the solute-solvent hydrogen bonding. The first and 
the oldest concept of dielectric friction invoked by chemists is the ‘solvent-berg’ model, in 
which it is assumed that there is a solute-solvent interaction causing increase in the volume 
of the solute. Such an enhancement of the volume automatically causes the molecule to 
rotate slower. However, reservations against such an explanation have also been expressed 
(Chuang and Eisenthal, 1972; Horng et al., 1997). Objections to this kind of interpretations 
arise from the fact that in bulk solution, the solvent molecules are expected to exchange 
(solute-solvent hydrogen bonding dynamics) on a much faster time scale compared to the 
rotational dynamics. Later, the slower reorientation times of polar molecules in polar 
solvents have been interpreted using dielectric friction theories (Phillips et al., 1985; Dutt et 
al., 1990; Alavi et al., 1991b,c; Dutt and Raman, 2001; Gustavsson et al., 2003). Dielectric 
friction on a rotating solute arises because the polar molecule embedded in a dielectric 
medium polarizes the surrounding dielectric. As the solute tries to rotate, the polarization of 
the medium cannot instantaneously keep in phase with the new orientation of the probe 
molecule and this lag exerts a retarding force on the probe molecule, giving rise to rotational 
dielectric friction. Although molecular theories of dielectric friction are available, at present 
these theories are difficult to apply because they require some knowledge of the 
intermolecular potential or some unavailable properties of the solvent. Continuum theories 
offer advantages of simplicity and the calculation of molecular friction in terms of easily 
accessible bulk properties of the solvent. 
The SED theory has been found to describe the rotational dynamics of medium sized 
molecules fairly well when the coupling between the solute and solvent is purely 
mechanical or hydrodynamic in nature. It is documented that the SED model correctly 
predicts the linear dependence of the rotational reorientation times on the solvent viscosity 
for polar and cationic dyes dissolved in polar and non polar solvents (Chuang and 
Eisenthal, 1971; Fleming et al., 1976; 1977; Porter et al., 1977; Moog et al., 1982; Spears and 
Cramer, 1978; Millar et al., 1979; von Jena and Lessing, 1979a, b; 1981; Rice and Kenney-
Wallace, 1980; Waldeck and Fleming, 1981; Dutt et al., 1990; Alavi et al., 1991a, b, c; 
Krishnamurthy et al., 1993; Dutt et al., 1998) that have been interpreted using dielectric 
fiction theories. The dielectric friction can be modeled using continuum theories of Nee-
Zwanzig (NZ) (Nee and Zwanzig, 1970), which treats the solute as a point dipole rotating in 
a spherical cavity, Alavi-Waldeck (AW) (Alavi and Waldeck, 1991b; 1993) model which is an 
extension of the NZ theory where the solute is treated as a distribution of charges instead of 
point dipole and the semiempirical approach of van der Zwan and Hynes (vdZH) (van der 
Zwan and Hynes, 1985) in which fluorescence Stokes shift of the solute in a given solvent is 
related to dielectric friction. Conversely, the results of neutral and nonpolar solutes deviate 
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significantly from the hydrodynamic predictions at higher viscosities (Waldeck et al., 1982; 
Canonica et al., 1985; Phillips et al., 1985; Courtney et al., 1986; Ben Amotz and Drake, 1988; 
Roy and Doraiswamy, 1993; Williams et al., 1994; Jiang and Blanchard, 1994; Anderton and 
Kauffman, 1994; Brocklehurst and Young, 1995; Benzler and Luther, 1997; Dutt et al., 1999; 
Ito et al., 2000; Inamdar et al., 2006). These probes rotate much faster than predicted by the 
SED theory with stick boundary condition and are described by either slip boundary 
condition or by quasihydrodynamic theories. Slip boundary condition (Hu and Zwanzig, 
1974) assumes the solute-solvent coupling parameter to be less than unity, contrary to the 
stick boundary condition. Quasihydrodynamic theories of Gierer and Wirtz (GW) (Gierer 
and Wirtz, 1953) and Dote, Kivelson and Schwartz (DKS) (Dote, Kivelson and Schwartz, 
1981) attempt to improve upon SED theory by taking into consideration not only the size of 
the solute but also that of the solvent molecule, thereby modifying the boundary conditions. 
It has been argued (Ben Amotz and Drake, 1988; Roy and Doraiswamy, 1993) that as the size 
of the solute molecule becomes much larger than the size of the solvent molecule, the 
observed reorientation times approach the SED theory with the stick boundary condition.  
Based on the above description, we have chosen two kinds of solutes categorized as 
nonpolar and polar to study their rotational reorientation dynamics in nonpolar, polar and 
binary mixtures of solvents. In the first case, where the nonpolar probes embedded in polar 
or nonpolar solvents to examine the influence of solute to solvent size ratio and the shape of 
the solute on the friction experienced by the probe molecule which in turn enables to test the 
validity of hydrodynamic and quasihydrodynamic theories. The friction experienced by 
these probes is purely hydrodynamic or mechanical in nature since it is dominated by short-
range repulsive forces. Polar probes used in charged polar solvents with an intention of 
understanding how the long-range electrostatic interactions between the solute and the 
solvent, which are charge-dipole or dipole-dipole in nature, influence the rotational 
dynamics of the probe molecules. Dielectric friction on a rotating solute arises because of the 
polar molecule entrenched in a dielectric medium polarizes the surrounding dielectric. As 
the solute tries to rotate, the polarization of the medium cannot instantaneously keep in 
phase with the new orientation of the probe molecule and this lag exerts a retarding force on 
the probe molecule, giving rise to rotational dielectric friction. 

2.1 Theoretical background 
Among the many proposed models for the study of rotational motion, the most commonly 
employed is the rotational diffusion model outlined by Debye (Debye, 1929), in which the 
reorientation is assumed to occur in small angular steps. On account of high frequency 
collisions, a molecule can rotate through a very small angle before undergoing another 
reorienting collision. The rotational diffusion equation solved to obtain the rotational 
correlation time τr of the density function ( , )ρ θ φ is given by (Lackowicz, 2006) 
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where D is the rotational diffusion coefficient. For spherical particles ρ satisfies the form 
1 ,( ) ( , )l mC t Y θ φ  in isotropic liquids, where , ( , )l mY θ φ  are the Legendre polynomials and the 

coefficient 1( )C t is essentially the same as the correlation function. Substitution of 
1 ,( ) ( , )l mC t Yρ θ φ=  gives an ordinary differential equation for C as 
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This implies that the correlation function decays exponentially, /te η− and the correlation 
time [ ] 1( 1)l l l Dτ −= + . In fluorescence depolarization experiments, one measures the 
anisotropy decay which is l=2 correlation and hence 1(6 )r Dτ −= .  
The rotational diffusion co-efficient of a solute is given by the Stokes-Einstein model 
(Lakowicz, 2006) as 

 kT
D

ζ
=  (11) 

where ζ  is the friction coefficient and kT is the thermal energy. It is this friction, which is of 
great importance in theoretical as well as experimental studies. A molecule rotating in liquid 
experiences friction on account of its continuous interaction with its neighbors and the 
desire to understand has been a motivating force in carrying the experimental 
measurements of rotational reorientation in liquids. 

2.1.1 Hydrodynamic theory 
Mechanical friction on a rotating solute in solvent is computed employing hydrodynamic 
theory by treating the solute as a smooth sphere rotating in a continuum fluid, which is 
characterized by a shear viscosity. If ‘a’ is the radius of the molecule and ‘η’ the viscosity of 
the liquid, then according to Stokes law (Stokes, 1956) 

 38 aζ π η=  (12) 

Eqn. (11) reduces to 

 38
kT

D
aπη

=  (13) 

The rotational correlation time (τr) is given by  

 1
6 6r D kT

ζτ = =  (14) 

substitution of Eqn. (12) in (14) gives 

 r
V

kT
ητ =  (15) 

where V is the molecular volume. The most widely used Stokes-Einstein-Debye (SED) 
hydrodynamic equation for the description of rotational dynamics of spherical molecule is 
given by 

 0r
V

kT
ητ τ= +  (16) 

where τ0 is the rotational reorientation time at zero viscosity. It is known that spherical 
approximation embedded in a SED is glossy in error and the shape of the probes is however, 
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more important. In reality, the exact shape of the solute molecule is need not be a spherical 
and there is a necessary to include a parameter, which should describe the exact shape of 
nonspherical probes. Hence, the equation for nonspherical molecule proposed by Perrin 
(Perrin, 1936) is given as follows 

 ( )r
V

fC
kT
ητ =  (17) 

where f is shape factor and is well specified, C is the boundary condition parameter 
dependent strongly on solute, solvent and concentration. The shapes of the solute molecules 
are usually incorporated into the model by treating them as either symmetric or asymmetric 
ellipsoids. For nonspherical molecules, f >1 and the magnitude of deviation of f from unity 
describes the degree of the nonspherical nature of the solute molecule. C, signifies the extent 
of coupling between the solute and the solvent and is known as the boundary condition 
parameter (Barbara and Jarzeba, 1990). In the two limiting cases of hydrodynamic stick and 
slip for a nonspherical molecule, the value of C follows the inequality, 0< C ≤ 1 and the exact 
value of C is determined by the axial ratio of the probe.  
It is observed that the experimentally measured rotational reorientation times of number of 
the nonpolar solutes (Waldeck et al., 1982; Canonica et al., 1985; Phillips et al., 1985; 
Courtney et al., 1986; Ben Amotz and Drake, 1988; Roy and Doraiswamy, 1993; Williams et 
al., 1994; Jiang and Blanchard, 1994; Anderton and Kauffman, 1994; Brocklehurst and 
Young, 1995; Benzler and Luther, 1997; Dutt et al., 1999; Ito et al., 2000; Inamdar et al., 2006) 
could be described by the SED theory with slip boundary condition (subslip behavior). For a 
homologous series of solvents such as alcohols or alkanes, the normalized reorientation 
times decreased as the size of the solvent is increased. In other words, the reorientation 
times did not scale linearly with solvent viscosity.  

2.1.2 Quasihydrodynamic theories 
While the SED hydrodynamic theory takes only the size of the solute molecule into account 
leaving solvent size aside, one needs to consider the size of the solute as well as solvent 
molecules. Quasihydrodynamic theories consider these and modify the boundary condition 
accordingly. To explain such observation of size effects, two quasihydrodynamic theories by 
Gierer and Wirtz (GW) and Dote, Kivelson and Schwartz (DKS) have been used. 
i. Gierer and Wirtz theory (GW) 
The first and the relatively old theory proposed by Girer and Wirtz (GW) in 1953, takes into 
account both the size of the solute as well as that of the solvent while calculating the 
boundary condition. It visualizes the solvent to be made up of concentric shells of spherical 
particles surrounding the spherical probe molecule at the center. Each shell moves at a 
constant angular velocity and the velocity of successive shells decreases with the distance 
from the surface of the probe molecule, as though the flow between the shells is laminar. As 
the shell number increase, i.e., at large distances, the angular velocity vanishes. The angular 
velocity 1ω  of the first solvation shell is related to the angular velocity 0ω of the probe 
molecule by means of a sticking factor σ . 

 1 0ω σω=  (18) 

When 1σ = , it gives the stick boundary condition and σ is related to the ratio of the solute 
to solvent size, as 
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Vs and Vp are the volumes of the solvent and probe, respectively. The expression for CGW is 
given by 

 0GWC Cσ=  (21) 

C in Eqn. (17) should be replaced with CGW obtained from Eqn. (21) for calculating the 
reorientation times with GW theory. When the ratio Vs/Vp is very small CGW reduces to 
unity and the SED equation with stick boundary condition is obtained.  
ii. The Dote-Kivelson-Schwartz theory (DKS) 
Although, the GW theory is successful in predicting the observed size effects in a qualitative 
way, it could not explain the faster rotation of nonpolar probes in alcohols compared 
alkanes. Hence, the second relatively new quasihydrodynamic theory, was proposed by 
Dote, Kivelson and Schwartz (DKS) in 1981. This theory not only takes into consideration 
the relative sizes of the solvent and the probe but also the cavities or free spaces created by 
the solvent around the probe molecule. If the size of the solute is comparable to the free 
volumes of the solvents, the coupling between the solute and the solvent will become weak 
which results in reduced friction experienced by the probe molecule. According to DKS 
theory the solute-solvent coupling parameter, CDKS is given by (Dote, Kivelson and 
Schwartz, 1981) 

 1(1 / )DKSC γ φ −= +  (22) 

where /γ φ  is the ratio of the free volume available for the solvent to the effective size of 
the solute molecule, with 

 
2/3

4 1p

p s

VV
V V
Δγ

   = +     
, (23) 

and φ is the ratio of the reorientation time predicted by slip hydrodynamics to the stick 
prediction for the sphere of same volume. ΔV is the smallest volume of free space per 
solvent molecule and some discretion must be applied while calculating this term (Dutt et 
al., 1988; Anderton and Kauffman, 1994; Dutt and Rama Krishna, 2000). ΔV is empirically 
related to the solvent viscosity, the Hilderbrand-Batchinsky parameter B and the isothermal 
compressibility kT of the liquid by 
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 TV Bk kTΔ η=  (24) 

Since the Frenkel hole theory and the Hilderbrand treatment of solvent viscosity were 
developed for regular solutions (Anderton and Kauffman, 1994), Equation (24) may not be a 
valid measure of the free space per solvent molecule for associative solvents like alcohols 
and polyalcohols. Hence, for alcohols ΔV is calculated using  

 m sV V VΔ = −  (25) 

where mV  is the solvent molar volume divided by the Avogadro number. 

2.1.3 Dielectric friction theories 
The simple description of hydrodynamic friction arising out of viscosity of the solvent 
becomes inadequate when the motion concerning rotations of polar and charged solutes 
desired to be explained. A polar molecule rotating in a polar solvent experiences hindrance 
due to dielectric friction ( DFζ ), in addition to, the mechanical ( Mζ ) or hydrodynamic 
friction. In general, the dielectric and mechanical contributions to the friction are not 
separable as they are linked due to electrohydrodynamic coupling (Hubbard and Onsager, 
1977; Hubbard, 1978; Dote et al., 1981; Felderhof, 1983; Alavi et al., 1991c; Kumar and 
Maroncelli, 2000). Despite this nonseparability, it is common to assume that the total friction 
experienced by the probe molecule is the sum of mechanical and dielectric friction 
components, i.e., 

 Total M DFζ ζ ζ= +  (26) 

Mechanical friction can be modeled using both hydrodynamic (Debye, 1929) and 
quasihydrodynamic (Gierer and Wirtz, 1953; Dote et al., 1981) theories, whereas, dielectric 
friction is modeled using continuum theories. 
The earliest research into dielectric effects on molecular rotation took place in the theoretical 
arena. Initial investigations were closely intertwined with the theories of dielectric 
dispersion in pure solvents (Titulaer and Deutch, 1974; Bottcher and Bordewijk, 1978; Cole, 
1984). Beginning with the first paper to relate the dielectric friction to rotational motion 
published by Nee and Zwanzig in 1970, a number of studies have made improvements to 
the Nee-Zwanzig approach (Tjai et al, 1974; Hubbard and Onsager, 1977; Hubbard and 
Wolynes, 1978; Bordewijk, 1980; McMahon, 1980; Brito and Bordewijk, 1980; Bossis, 1982; 
Madden and Kivelson, 1982; Felderhof, 1983; Nowak, 1983; van der Zwan and Hynes, 1985; 
Alavi et al, 1991a,b,c; Alavi and Waldeck, 1993). These have included the 
electrohydrodynamic treatment which explicitly considers the coupling between the 
hydrodynamic (viscous) damping and the dielectric friction components.  
i. The Nee-Zwanzig theory 
Though not the first, the most influential early treatment of rotational dielectric friction was 
made by Nee and Zwanzig (NZ) (1970). These authors examined rotational dynamics of the 
same solute/solvent model in the simple continuum (SC) description i.e., they assumed an 
Onsager type cavity dipole with dipole moment μ and radius a embedded in a dielectric 
continuum with dispersion ε(ω). Motion was assumed to be in the purely-diffusive (or 
Smoluchowski) limit. Using a boundary condition value calculation of the average reaction 
field, Nee and Zwanzig obtained their final result linking the dielectric friction contribution 
in the spherical cavity as  
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where 0ε , ε∞  and Dτ  are the zero frequency dielectric constant, high-frequency dielectric 
constant and Debye relaxation time of the solvent, respectively. 
If one assumes that the mechanical and dielectric components of friction are separable, then 

 obs
r SED DFτ τ τ= +  (28) 

Therefore, the observed rotational reorientation time ( obs
rτ ) is given as the sum of 

reorientation time calculated using SED hydrodynamic theory and dielectric friction theory. 

 
22

0
3 2

0

( 2) ( )
9 (2 )

obs D
r

VfC
kT a kT

η ε ε ε τμτ
ε ε

∞

∞

+ −= +
+

 (29) 

It is clear from the above equation that for a given solute molecule, the dielectric friction 
contribution would be significant in a solvent of low ε and high τD. However, if the solute is 
large, the contribution due to dielectric friction becomes small and the relative contribution 
to the overall reorientation time further diminishes due to a step increase in the 
hydrodynamic contribution. Hence, most pronounced contribution due to dielectric friction 
could be seen in small molecules with large dipole moments especially in solvents of low ε 
and large τD. 
ii. The van der Zwan-Hynes theory (vdZH) 
A semiempirical method for finding dielectric friction proposed by van der Zwan and 
Hynes (1985), an improvement over the Nee and Zwanzig model, provides a prescription 
for determining the dielectric friction from the measurements of response of the solute in the 
solvent of interest. It relates dielectric friction experienced by a solute in a solvent to 
solvation time, τs, and solute Stokes shift, S. According to this theory the dielectric friction is 
given by (van der Zwan and Hynes, 1985) 

 
2

2 6( )
s

DF
S
kT
τμτ

Δμ
=  (30) 

where Δμ  is the difference in dipole moment of the solute in the ground and excited states 
and  

 a fS h hν ν= −  (31)  

where ahν and fhν are the energies of the 0-0 transition for absorption and fluorescence, 
respectively. The solvation time is approximately related to the solvent longitudinal 
relaxation time, 0( / )L Dτ τ ε ε∞=  and is relatively independent of the solute properties. 
Hence, τL can be used in place of τs in Eqn. (30).  
Assuming the separability of the mechanical and dielectric friction components, the 
rotational reorientation time can be expressed as  
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where the first term represents the mechanical contribution and the second the dielectric 
contribution. 
iii. The Alavi and Waldeck theory (AW) 
Alavi and Waldeck theory (Alavi and Waldeck, 1991a), proposes that it is rather the charge 
distribution of the solute than the dipole moment that is used to calculate the friction 
experienced by the solute molecule. Not only the dipole moment of the solute, but also the 
higher order moments, contribute significantly to the dielectric friction. In other words, 
molecules having no net dipole moment can also experience dielectric friction. AW theory 
has been successful compared to NZ and ZH theories in modeling the friction in 
nonassociative solvents (Dutt and Ghanty, 2003). The expression for the dielectric friction 
according to this model is given by (Alavi and Waldek, 1991a) 

 0
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where ( )M
LP x are the associated Legendre polynomials, a is the cavity radius, N is the 

number of partial charges, qi is the partial charge on atom i, whose position is given by 
( , ,i i ir θ φ ), and ji j iφ φ φ= − . Although the AW theory too treats solvent as a structureless 
continuum like the NZ and vdZH theories, it provides a more realistic description of the 
electronic properties of the solute. 

3. Experimental methods 
The experimental techniques used for the investigation of rotational reorientation times 
mainly consist of steady-state fluorescence spectrophotometer and time resolved 
fluorescence spectrometer employing time correlated single photon counting (TCSPC). 

3.1a Steady-state measurements 
For vertical excitation, the steady-state fluorescence anisotropy can be expressed as (Dutt et 
al., 1999; Lakowicz, 1983) 

 ||

|| 2
I GI

r
I GI

⊥

⊥

−
< >=

+
 (35) 

where ||I  and I⊥ denote the fluorescence intensities parallel and perpendicular polarized 
components with respect to the polarization of the exciting beam. G (= 1.14) is an 
instrumental factor that corrects for the polarization bias in the detection system (Inamdar et 
al., 2006) and is given by 
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I
G

I
=  (36) 

where HVI  is the fluorescence intensity when the excitation polarizer is kept horizontal and 
the emission polarizer vertical and HHI  is the fluorescence intensity when both the 
polarizers are kept horizontal. 

3.1b Time-resolved fluorescence measurements 
The fluorescence lifetimes of all the probes were measured with time correlated single 
photon counting technique (TCSPC) using equipment described in detail elsewhere 
(Selvaraju and Ramamurthy, 2004). If the decay of the fluorescence and the decay of the 
anisotropy are represented by single exponential, then the reorientation time τr is given by 
(Lakowicz, 1983) 

 
0( / 1)

f
r r r

τ
τ =

< > −
 (37) 

where r0 is the limiting anisotropy when all the rotational motions are frozen and τf is the 
fluorescence lifetime. 
In case of a prolate-ellipsoid model, the parameter stickf  is given by (Anderton and 
Kauffman, 1994) 
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where ρ is the ratio of major axis (a) to the minor axis (b) of the ellipsoid. This expression is 
valid for stick boundary condition.  

3.2 Fluorescent probes used in the study 
Nonpolar probes 
A variety of the nonpolar fluorescent probe molecules have been studied extensively in the 
recent past. Most of the nonpolar probes so far studied have the radii of 2.5 Å to 5.6 Å 
(Inamdar et al., 2006) and a transition towards stick boundary condition is evident with 
increase in size of the solute. Most of the medium sized neutral nonpolar molecules rotate 
faster in alcohols compared to alkanes, which is in contrast to that of smaller neutral solutes. 
It is also noted that the quasihydrodynamic description is adequate for small solutes of 2-3 
Å radius in case of GW theory whereas, the DKS model with experimental value in alcohols 
fail beyond the solute radius of 4.2 Å. Our earlier work on rotational dynamics of exalite 
probes E392A (r = 5.3 Å), and E398 (r = 6.0 Å), yielded striking results (Inamdar et al., 2006), 
in that, these large probes rotated much faster than slip hydrodynamics and followed 
subslip trend in alcohols. 
The quest to understand the influence of size of solute on rotational dynamics is continued 
with three nonpolar solutes viz., Exalite 404 (E404), Exalite 417 (E417) and Exalite 428 (E428), 
which may further fill the gap between the existing data. These probes have an anistropic 
shape and a dipole emission along their long rod-like backbones. The rod like or cylinder 
shape is a macromolecular model of great relevance. A number of biopolymers including 
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some polypeptides, proteins, nucleic acids and viruses, under certain conditions exhibit the 
typical rod-like conformation and their hydrodynamic properties can therefore be analyzed in 
terms of cylindrical models. Surprisingly, not much is studied about the motion of these highly 
anisotropic rod-like molecules in liquids, neither experimentally nor by any simulation 
studies. These exalite dyes have found applications in many areas of research. When pumped 
by XeCl-excimer laser, Ar+ and Nd:YAG laser, provide tunable lasers in the ultraviolet-blue 
range (Valenta et al., 1999). E428 has been used to generate circularly polarized light in glassy 
liquid crystal films (Chen et al., 1999). Exalites are mixed with plastic scintillators (PS) to form 
new scintillaors, which are for superficial and diagnostic applications (Kirov et al., 1999).  
Polar probes 
Rotational diffusion of medium-sized molecules provides a useful means to probe solute-
solvent interactions and friction. By modeling this friction using various continuum-based 
theories (NZ, AW and ZH) one can get better insight into the nature of solute-solvent 
interactions. In order to understand the effect of polar solvents on the reorientational 
dynamics of the polar solutes, one must unravel the effects of mechanical friction, dielectric 
friction and specific short-range solute-solvent interactions. To address this issue, rotational 
dynamics of three polar laser dyes: coumarin 522B (C522B), coumarin 307 (C307) and 
coumarin 138 (C138) having identical volumes and distinct structures have been carried out 
in series of alcohols and alkanes. These coumarins are an important class of oxygen 
heterocycles, which are widespread in plant kingdom and have been extensively used as 
laser dyes. Their chemical structures can be looked upon as arising out of the fusion of a 
benzene ring to pyran-2-one, across the 5- and 6-positions in skeleton. In the present 
coumarins, the two free substituents at 6 and 7 positions, ethylamino and methyl for C307 in 
comparison with the analogous model substrate C522B wherein, there is no free substituent 
rather they are joined by ends to obtain piperidino moiety. These two probes are looked 
upon as polar due to the presence of electron donating amino group and electron 
withdrawing CF3 group. In C138, this CF3 group is replaced by an alkyl group making it less 
polar compared to C522B and C307.  
The rotational diffusion studies of the following two sets of structurally similar molecules 
dyes: (i) coumarin-440 (C440), coumarin-450 (C450), coumarin 466 (C466) and coumarin-151 
(C151) and (ii) fluorescein 27 (F27), fluorescein Na (FNa) and sulforhodamine B (SRB) in 
binary mixtures of dimethyl sulphoxide + water and propanol + water mixtures, 
respectively. Among coumarins, C466 possess N-diethyl group at the fourth position 
whereas, other three dyes possess amino groups at the seventh position in addition to 
carbonyl group. This structure is expected to influence molecular reorientation due to 
possible hydrogen bonding with the solvent mixture. The spectroscopic properties of 
fluorescein dyes are well known with the dyes having applications ranging from dye lasers 
to tracers in flow visualization and mixing studies. SRB has been used to measure drug-
induced cytotoxicity and cell proliferation for large-scale drug-screening applications 
(Koochesfahani and Dimotakis, 1986; Dahm et al., 1991; Karasso and Mungal, 1997; Voigt, 
2005). Both F27 and FNa are neutral polar molecules each containing one C = O group, F-27 
has two Cl and FNa has two Na groups. The anionic probe SRB possesses N (C2H5), N+ 
(C2H5) groups and sulfonic groups SO3Na and SO-3 at positions 3, 6, 4′ and 2′, respectively.  
The laser grade nonpolar probes Exalites (E404, E417 and E428), nonpolar probes (i) 
coumarin derivatives  (C522B, C307 and C138) and (ii) F27, FNa and SRB (all from Exciton 
Chemical Co., USA) were used as received. For steady-state experiments, all the samples 
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were excited at 375 nm and the emission was monitored from 403-422 nm from alkanes to 
alcohols for Exalites. All the solvents (Fluka, HPLC grade) were used without further 
purification. The concentration of all the solutions was kept sufficiently low in order to 
reduce the effects of self-absorption. All the measurements were performed at 298 K.  

3.2.1 Rotational dynamics of non-polar probes 
The molecular structures of the non-polar probes exalite 404 (E404), exalite 417 (E417) and 
exalite 428 (E428) chosen for the study are shown in Fig.2.The absorption and fluorescence 
spectra of the probes in methanol are shown in Fig.3. These probes are approximated as 
prolate ellipsoids (Inamdar et al., 2006) with molecular volumes 679, 837 and 1031 Å3, 
respectively, for E404, E417 and E428. The rotational reorientation times (τr) calculated using 
Eqn. (4.43), are tabulated in Table 1 and 2, respectively. 
 

 
Fig. 2. Molecular structures of (a) E404, (b) E417 and (c) E428 
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Fig. 3. Absorption and Fluorescence spectra of E404 
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a Viscosity data is from Inamdar et al., 2006 

Table 1. Rotational reorientation times (τr) of Exalites in alkanes at 298K 

 

 
a Viscosity data is from Inamdar et al., 2006 

Table 2. Rotational reorientation times (τr) of Exalites in alcohols at 298K 

i. Rotational reorientation times of Exalite 404 (E404) 
Fig. 4 gives the plot of τr vs η in alkanes and alcohols for E404 shows that τr values increase 
linearly with η both in alkanes and alcohols, following slip hydrodynamic and subslip 
behavior, respectively. This clearly indicates that the rotational dynamics of E404 follows 
SED hydrodynamics with slip boundary condition. Further, E404 rotates slower in alkanes 
compared to alcohols by a factor of 1 to 1.3. It may be recalled that E392A followed SED 
hydrodynamics near stick limit in alkanes (Inamdar et al., 2006). E404 is larger than E392A 
by a factor of 1.1, and exhibits an opposite behavior to that of E392A following slip behavior 
in alkanes. Interestingly, the rotational dynamics of both these probes follow subslip 
behavior in higher alcohols.  
Theoretical justification for this approach is provided by the microfriction theories of Geirer-
Wirtz (GW) and Dote-Kivelson-Schwartz (DKS) wherein the solvent size as well as free 
spaces is taken into account. However, there is a large deviation of experimentally measured 
reorientation times from those calculated theoretically.  
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Fig. 4. Plot of rotational reorientation times of E404 as function of viscosity in (a) alkanes and 
(b) alcohols. The symbols (○,●) represent experimentally measured reorientation times. The 
stick and slip lines calculated using hydrodynamic theory are represented by solid lines. 
GW and DKS theories are represented using the symbols Δ and  respectively. 

ii. Rotational reorientation times of Exalite 417 (E417) 
The rotational reorientation times of E417 scale linearly with η (Fig. 5) and exhibits subslip 
behavior in alcohols. A large nonlinearity is observed on increasing solvent viscosity. In 
alkanes, the rotational reorientation times follow slip hydrodynamic boundary condition, 
similar to E404. GW theory is unable to explain experimental results while DKS theory is in 
fairly good agreement with experiment and slip hydrodynamics in case of alkanes.  
iii. Rotational reorientation times of Exalite 428 (E428) 
E428 is the largest probe studied so far in literature. In alcohols the τr values for E428 
increase linearly with η from methanol to butanol and follows slip boundary condition, and 
from pentanol to decanol a large deviation from the linearity is observed resulting in subslip 
behavior (Fig. 6). However, in alkanes the measured reorientation times, clearly follow slip 
hydrodynamics up to tridecane, whereas in higher alkanes pentadecane and hexadecane  
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Fig. 5. Plot of rotational reorientation times of E417 as function of viscosity in (a) alkanes and 
(b) alcohols. The symbols (○,●) represent experimentally measured reorientation times. The 
stick and slip lines calculated using hydrodynamic theory are represented by solid lines. GW 
and DKS quasihydrodynamic theories are represented using the symbols Δ and  respectively. 
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Fig. 6. Plot of rotational reorientation times of E428 as function of viscosity in (a) alkanes and 
(b) alcohols. The symbols (○,●) represent experimentally measured reorientation times. The 
stick and slip lines calculated using hydrodynamic theory are represented by solid lines. GW 
and DKS quasihydrodynamic theories are represented using the symbols Δ and  respectively. 
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subslip behavior is observed. It is interesting to note that, all the three probes rotate much 
faster in alcohols compared to alkanes. This can be explained as due to large interstitial gaps 
that may be formed in the solvent medium and because of the possible elastic nature of the 
spatial H-bonding network of large alcohol molecules constituting a supramolecular structure. 
The elasticity of the spatial network is a driving force for solvophobic interaction, which is 
important for the larger probes. Presumably these exalite molecules will be located mainly in 
these solvophobic regions. The probe molecules, thus, can rotate more freely in these gaps as 
they experience reduced friction due to a decreased viscosity at the point of contact. This 
actual viscosity is highly localized and cannot be measured easily. In such a situation the 
coupling parameter C can be much smaller than Cslip predicted by slip hydrodynamic 
boundary condition. One of the plausible reasons is also due to the Brownian motion, which 
results from the fluctuating forces in the liquid, is behind and diffusive process. 
Ben-Amotz and Scott (1987) opined that processes, which are slow compared to solvent 
fluctuations, would see the full spectrum of the fluctuations and thus the shear viscosity of 
the solvent. For example, the fluctuations in n-alcohols occur roughly on the 100 ps/mPa s 
time scale – precisely the time scale of the Debye absorption in these solvents. On the other 
hand, processes, which are extremely fast, do not experience Brownian fluctuating force and 
are not viscously damped. Thus one expects a reduction in microscopic friction for probe 
molecules, which diffuse at a rate comparable to or faster than the solvent fluctuations. This 
is exactly the type of effect, which could explain the faster rotational diffusion of exalites in 
n-alcohols than in n-alkanes. Further, the subslip behavior observed for these probes in 
polar solvents indicates the existence the nonhydrodynamic forces and the straightforward 
relation between the probe size and the nature of their behavior may not be appropriate.  
Table 3 and 4 contain selected data for various neutral solute molecules (including exalites), 
whose rotational times in alkanes and alcohols have been measured experimentally. There 
are many reports on rotational diffusion of small neutral molecules which follow subslip 
behavior. Garg and Smyth (1965) have attributed these alcohol molecules to be associated  
 

 
Table 3. List of normalized rotational diffusion parameters of neutral nonpolar solutes in 
alkanes, at 25±50 C 
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Table 4. List of normalized rotational diffusion parameters of neutral nonpolar solutes in 
alcohols, at 25±50 C 

with hydrogen bridges in temporary microcrystalline structures. These structures are in fact 
not stable, and at a given instant each of these has a finite length. At each instance some 
hydrogen bonds are ruptured and others are formed. 
The first dispersion region is connected with the molecules in these microcrystalline 
structures. The dielectric relaxation process involves the breaking and reforming of the 
hydrogen bonds with the orientation of dipole moment, and the rate of breaking off is a 
determining factor for the relaxation time. In order to check whether there is any dielectric 
friction on these large nonpolar probes in alcohols, we have also calculated dielectric friction 
contribution to the rotating probe molecule. The dipole moment values in the excited states 
were obtained using solvatochormic shift method (Inamdar et al., 2003; Nadaf et al., 2004; 
Kawski et al., 2005). It is noted that summing up the contribution due to hydrodynamic and 
dielectric friction will not affect the subslip trend exhibited by the rotational reorientation 
times. Hence, we attribute this unhindered faster rotation due to strong hydrogen bonding 
among the solvent molecules leading to supramolecular structures. 
There are several reports in literature where the reorientation times of neutral nonpolar 
solutes have been measured as a function of solute size and the transition from slip to stick 
hydrodynamics has been observed experimentally. Ben-Amotz and Drake (Ben-Amotz and 
Drake, 1988) have reported the rotational dynamics of the neutral large sized probe BTBP 
(V=733 Å3) in series of alcohols and alkanes, and observed that rotational correlation times 
followed stick boundary condition. Though, BTBP contain the electronegative groups like -
O and –N, which are capable of forming hydrogen bond with any solvent, they attributed, 
stick condition to its volume which is much larger than that of all the solvent molecules 
studied. Later, Roy and Doraiswamy (Roy and Doraiswamy, 1993) have studied the 
rotational dynamics of series of nonpolar solutes, which do not contain any electronegative 
groups like -O or –N. They observed transition towards the stick boundary condition on 
increasing the solute size from BMQ (V = 325 Å3) to QUI (V = 639 Å3). It is clear from the 
above two findings that a stick transition arises due to increase in the solute size, when 
compared to that of the solvent. Thus, one can expect stick or superstick behavior in case of 
exalites (E404, E417 and E428) as these are larger than QUI by a factor of 1.1, 1.3 and 1.6, 
respectively. The present situation, where the largest probe E428 follows subslip in alcohols 
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is surprising in the light of above studies. In such a situation the microscopic friction of the 
solvent molecules reduces well below the macroscopic value, which may result from either 
dynamic or structural features of the macroscopic solvation environment-giving rise to 
faster rotation in hydrogen bonding solvents.  
On the other hand, rotational reorientation times of these exalite nonpolar probes bequeath 
interesting results following slip boundary condition in alkanes. It is observed from the 
Table 5 that there is a difference in slope for the two solvent types. Therefore, it is evident 
that the rotational reorientation times of these exalites are shorter in alcohols than alkanes of 
comparable viscosity. This difference is an indication of nonhydrodynamic effects in one or 
both of the solvents. It is unlikely that nonhydrodynamic behavior resulting from frequency 
dependence of the solvent friction occurs in alkanes on the 100 ps to 1 ns time scale (Hynes, 
1986). These times are much longer than dynamic memory effects in the solvent arising from 
molecular collisions. These collisional events manifest themselves in the viscoelastic 
relaxation time, which for an n-alkane is estimated to lie in the subpicosecond to single 
picosecond time domain (Hynes, 1986).  
 

 
* Second entry for solute is a slope of the best fit line made to pass through the origin. 

Table 5. Linear regression results of rotational reorientation of exalites in series of alcohols, 
alkanes and binary mixture  

Thus one would expect rotational times to be well described by the SED relation with the 
appropriate boundary condition and the solute shape factor (Ben Amotz and Scott, 1987) 
in n-alkanes. The internal mobility also allows the solute molecule to slip better through 
the surrounding solvent molecules than for a rigid molecular backbone (Alavi et al., 
1991b,c). Waldeck et al. (1982) have also argued for the probe DPB, that the slip boundary 
condition is entirely reasonable for an uncharged nonpolar molecule in nonpolar solvents. 
E428 is about 5 times larger than DPB and from the Table 3; it is evident that τr/τstick ratio 
is same for both these probes in alkanes, which suggests the fact that the rotation of these 
probes can be well explained by slip hydrodynamics. Similarly, the studies of the neutral 
dye BBOT (Fleming et al., 1977), an approximate prolate top, found that this molecule 
followed slip boundary condition. It was anticipated that neutrals would not strongly 
interact with the solvent, and slip boundary condition were thus more appropriate. 
Others have argued (Porter et al., 1977) that the faster rotation observed for BBOT might 
also be due to the internal mobility of the dye. This may be one of the possible reasons for 
the faster rotation observed for the large exalite probes. Both GW and DKS models were 
tested for a quantitative prediction of τr of solutes in alkanes. The GW model predicts very 
low τr values in alkanes as well as in the case of alcohols and fails to satisfactorily explain 
the observed results. Also, the C values are nearly invariant of the size of the solute. It has 
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been evidenced that the GW theory correctly predicts the observed results for a solute 
with ~2.5 Å radius. Therefore, the GW model is adequate for very small solutes that show 
subslip behavior, viz., I2 and NCCCCN (Goulay, 1983). Though, DKS theory is found to be 
in good agreement with the experimentally observed trend up to decane in case of E404 
and up to nonane for E428, a better agreement is found in alkanes for E417. It has been 
noted that the rotational reorientation times in alkanes is reproduced quantitatively for 
solutes with radius up to 4.2 Å only, beyond which the theory tends to show poor 
agreement with experimental values [93]. Our experimental results are indicative of the 
fact the DKS theory also holds well even for larger probes up to a radius of 6.3 Å in 
alkanes and brings out the subtle variations in the observed data. 

3.2.2 Rotational dynamics of polar probes 
The rotational dynamics studies using polar solutes in polar solvents have shed lights on 
concepts such as dielectric friction and solute-solvent hydrogen bonding. In addition to 
viscous drag, polar-polar interaction between a polar solute and a polar solvent gives rise to 
an additional retarding force often termed as dielectric friction. This arises because of the 
inability of the solvent molecules, encircling the polar solute probe, to rotate synchronously 
with the probe. The result of this effect is the creation of an electric field in the cavity, which 
exerts a torque opposing the reorientation of the probe molecule. Under such circumstances, 
the observed friction, which is proportional to the measured reorientation time, has been 
explained as a combination of mechanical and dielectric frictions. However, many 
experimental investigations of reorientation dynamics have indicated that there is another 
source of drag on a rotating probe molecule due to hydrogen bonding between the solute 
and the solvent molecules. A solute molecule can form hydrogen bond with the solvent 
molecule depending on the nature of the functional groups on the solute and the solvent 
which enhances the volume of the probe molecule. This further impedes the rotational 
motion and thus the observed reorientation time becomes longer than that observed with 
the bare solute molecule.  
Molecular structures of the three coumarin dyes chosen under the category of polar probes 
are shown in Fig. 7. The reorientation times of C522B, C307 in alcohols and alkanes and 
C138 in alcohols (Mannekutla et al., 2010) are summarized in Tables 6 and 7. The τr values 
obtained in alkanes clearly show that C522B rotates faster compared to C307. In alcohols, it 
is interesting to note that, the probe C138 rotates faster almost by a factor of 1:2 from 
propanol to decanol compared to C522B and C307, respectively. In other words, C138 
experiences a reduced mechanical friction i.e., almost same as C522B and twice as C307 from 
propanol to decanol. This is because C307 shows greater interaction owing to its greater 
polarity.  
 

 
Fig. 7. Molecular structures of (a) C522B, (b) C307 and (c) C138 
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a Viscosity data is from Inamdar et al., 2006 

Table 6. Steady-state anisotropy (<r>), fluorescence lifetime (τf) and rotational reorientation 
time (τr) of coumarins in alcohols at 298K (the maximum error in the fluorescence life times 
is less than ±50 ps) (Mannekutla et al., 2010)  

 

 
a Viscosity data is from Inamdar et al., 2006 

Table 7. Steady-state anisotropy (<r>), fluorescence lifetime (τf) and rotational reorientation 
time (τr) of coumarins in alkanes at 298K for C522B and C307 (the maximum error in the 
fluorescence life times is less than ±50 ps) (Mannekutla et al., 2010)  

The probes C522B and C138 have shown coincidentally similar interactions. In C138, 
aminomethyl group being free contributes more to the charge separation through 
resonance- whereas in C522B this resonance contribution is sluggish, comparatively. 
However, the presence of -CF3 in C522B increases the charge separation, which leads to 
better interaction with the hydrogen bonding solvents. Replacement of -CF3 by cyclic alkyl 
group in C138 would not have any great contribution towards its polarity. Hence, the 
presence of two different groups with contradicting properties leads to the coincidental 
similarities in reorientation dynamics of C522B and C138. 
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The normalized rotational reorientation times (at unit viscosity) are smaller in alkanes 
compared to alcohols, which indicates that the probes C522B and C307 rotate faster in 
alkanes compared to alcohols. The reorientation times of the three probes thus obtained in 
alcohols follow the trend: 307 522 138C C B C

r r rτ τ τ> ≥ .  
Fig. 8 gives a typical plot of τr vs η for all the three probes in alcohols and in alkanes along 
with the stick and slip lines. Note that the experimentally measured reorientation times lie 
between slip and stick hydrodynamic in case of alcohols. However, in alkanes we observe, 
as the size of the solvent molecule becomes equal to and bigger than the size of the solute 
molecule, the probe molecule experiences a reduced friction. Benzler and Luther (1977) 
measured the reorientation time of biphenyl (V=150 Å3) and p-terphenyl (V=221 Å3) in n-
alkanes. For biphenyl a nonlinearity was observed in the plot of  τr vs η from decane and 
from tetradecane, in case of p-terphenyl. Singh [24] studied reorientation times of the probe 
neutral red (V=234 Å3) which experienced a reduced friction from tetradecane to 
hexadecane following subslip behavior. C522B (223 Å3) and C307 (217 Å3) have nearly 
identical volumes as compared to neutral red and p-terphenyl and thus a similar rotational 
relaxation in alkanes may be expected.  
 

 
Fig. 8. Plots of τr vs η for the three coumarins in alcohols (○), and alkanes (•) in case of C522B 
and C307 
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Note that the probes experience reduced friction as the size of the solvent increases. A 
number of probes have been studied (Phillips et al., 1985; Courtney et al., 1986; Ben Amotz 
and Drake, 1988; Roy and Doraiswamy, 1993; Williams et al., 1994; Jiang and Blanchard, 
1994; Anderton and Kauffman, 1994; Brocklehurst and Young, 1995) in alcohols and alkanes, 
wherein faster rotation of the probe in alcohols is observed compared to alkanes, which has 
been explained as due to higher free volume in alcohols compared to alkanes with the help 
of DKS theory. If there were no electrical interaction between the coumarins and alcohols, a 
faster rotation of the coumarins would have been observed in alcohols compared to alkanes, 
but an opposite trend has been observed that indicates the presence of electrical friction 
(Dutt and Raman, 2001). Before evaluating the amount of dielectric friction, the contribution 
due to mechanical friction must be estimated with a reasonable degree of accuracy. SED 
theory with a slip hydrodynamic boundary condition is often used to calculate the 
mechanical friction in case of medium-sized solute molecules. However, in the present 
study the solvent size increases by more than 5 times in alcohols from methanol to decanol. 
Hence, DKS quasihydrodynamic theory is found to be more appropriate, when size effect is 
taken into account as compared with GW. Eqn. 25 is used to calculate ΔV in associative 
solvents like alcohols, because CDKS obtained in this manner gave a better agreement with 
the experimental results (Hubbard and Onsager, 1977; Anderton and Kauffman, 1996; Dutt 
et al., 1999; Dutt and Raman, 2001).  
In summary, a faster rotation of the probes is observed in case of C522B and C138 in 
alcohols compared to C307. In spite of the distinct structures, almost similar rotational 
reorientation times are observed for C522B and C138 in alcohols from propanol to decanol. 
Further studies of dielectric friction in alcohols, the observed reorientation times of these 
coumarins could not follow the trend predicted by the theories of Nee-Zwanzig and van der 
Zwan-Hynes. Dielectric frictions obtained experimentally and theoretically using NZ and 
ZH theories, do not agree well.  

3.2.3 Rotational dynamics of polar probes in binary solvents 
Binary mixtures of polar solvents represent an important class of chemical reaction media 
because their polarity can be controlled through changes in composition. In a binary 
mixture, altering the composition of one of the ingredients can lead to a change in solubility, 
polarizability, viscosity and many other static and dynamic properties. Yet, it is often found 
that the dielectric properties of polar mixtures depart significantly from what one might 
expect on the basis of ideal mixing. In hydrogen-bonding systems, such as alcohol-water 
mixtures, intermolecular correlations are strong, and consequently, the dielectric properties 
of the mixture are usually not simply related to those of the separated components. 
Recently, the properties of some binary solutions were studied using theoretical calculations 
and molecular dynamics (MD) simulations (Chandra and Bagchi, 1991; Chandra, 1995; Skaf 
and Ladanyi, 1996; Day and Patey, 1997; Yoshimori et al., 1998; Laria and Skaf, 1999). The 
results showed that the dynamical features of binary solutions are very much different from 
those of neat solutions, and the dynamics can be strongly affected by the properties of the 
solute probe. The binary mixtures show exotic features which pose interesting challenges to 
both theoreticians and experimentalists. Amongst them, the extrema observed in the 
composition dependence of excess viscosity (Qunfang and Yu-Chun, 1999; Pal and Daas, 
2000) and the anomalous viscosity dependence of the rotational relaxation time (Beddard et 
al., 1981) are significant. The anomalous features in the complex systems arise from specific 
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intermolecular interactions due to structural heterogeneities. In DMSO+water mixture, the 
partial negative charge on the oxygen atom of the dimethyl sulphoxide molecule forms 
hydrogen bonds with water molecules, giving rise to a non-ideal behavior of the mixture. 
The non-ideality of mixtures depends on the nature of interaction between the different 
species constituting the mixture. Traube suggested that the anomalous behavior of viscosity 
in binary mixtures arises from the formation of clusters (Traube, 1886). The prominent 
hydrophilic nature of DMSO renders it capable of forming strong and persistent hydrogen 
bonds with water through its oxygen atom (Safford et al., 1969; Martin and Hanthal, 1975; 
De La Torre, 1983; Luzar and Chandler, 1993). This leads to the formation of DMSO-water 
molecular aggregates of well-defined geometry which are often responsible for the strong 
nonideal behavior manifested as maxima or minima (Cowie and Toporowski, 1964; Packer 
and Tomlinson, 1971; Fox and Whittingham, 1974; Tokuhiro et al., 1974; Gordalla and 
Zeidler, 1986; 1991; Kaatze et al., 1989). The largest deviations from the ideal mixing occur 
around 33% mole of DMSO, thus suggesting the existence of stoichiometrically well defined 
1DMSO:2water complexes. Recently, a number of MD simulations (Vaisman and Berkowitz, 
1992; Soper and Luzar, 1992; 1996; Luzar and Chandler, 1993; Borin and Skaf, 1998; 1999) 
and neutron diffraction experiments have indeed identified the structure of the 
1DMSO:2water complex and linked many of the structural and dynamical features of 
DMSO water mixtures to the presence of such aggregates. Of late, Borin and Skaf  (Borin 
and Skaf, 1998; 1999) have found from MD simulations, another distinct type of aggregate 
consisting of two DMSO molecules linked by a central water molecule through H-bonding, 
which is expected to be the predominant form of molecular association between DMSO and 
water in DMSO-rich mixtures. This H-bonded complex is referred to as 2DMSO:1water 
aggregate.  
The rotational diffusion studies of the following two sets of structurally similar molecules 
dyes: coumarin-440 (C440), coumarin-450 (C450), coumarin 466 (C466) and coumarin-151 
(C151) and fluorescein 27 (F27), fluorescein Na (FNa) and sulforhodamine B (SRB) (Fig. 9) in 
binary mixtures of dimethyl sulphoxide + water and propanol + water mixtures, 
respectively. Among coumarins, C466 possess N-diethyl group at the fourth position 
whereas, other three dyes possess amino groups at the seventh position in addition to 
carbonyl group. This structure is expected to affect the reorientation times due to the 
formation of hydrogen bond with the solvent mixture.  
The photo-physics of fluorescent molecules in solvent mixtures has not been studied as 
extensively as those in neat solvents. Thus the structure and structural changes in the 
solvent environment around the solute in the mixed solvents have not been fully 
understood. It is therefore important to investigate the photophysical characteristics that are 
unique to the binary solvent mixtures.  
DMSO is miscible with water in all proportions and aqueous DMSO solutions are quite 
interesting systems, as there exists a nonlinear relationship between the bulk viscosity and 
the composition of the solvent mixture. In DMSO-water binary mixture, there is a rapid rise 
in viscosity with a small addition of DMSO to water and viscosity decay profile after the 
post peak point is gradual. The sharp increase in the viscosity of the binary mixture with 
increasing DMSO concentration may be attributed to significant hydrogen bonding effects 
between water and DMSO molecules. Beyond around 15% composition of DMSO, there 
exist two DMSO compositions for which viscosity is same. This dual valuedness should 
manifest in reasonable mirror symmetry of the rotational reorientation time ( rτ ) about the  
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Fig. 9. The molecular structures of (a) C440, (b) C450, (c) C466, (d) C151, (e) F27, (f) FNa and 
(g) SRB. 

viscosity peak point. The viscosity of DMSO is slightly more than twice that of water. At 
about 40% mole composition of DMSO, the solvent mixture has a maximum value of 
viscosity of 3.75 m Pas which is 1.87 times that of DMSO and nearly 4 times that of water. 
From the viscosity profile it may be seen that there are four distinct compositions of DMSO 
for which the viscosity is nearly the same and as per hydrodynamic theory the friction 
experienced by a rotating probe molecule is expected to be the same.  
Fig. 10 (a and b) represent the variation of rτ  with η along with theoretical profile including 
the viscous and the dielectric contribution for all the probes, which clearly indicates a non-
hydrodynamic behavior. The rotational reorientation time of a solute in a solvent is in a way 
an index of molecular friction. Experimentally obtained results of all the probes under study 
show a hairpin profiles bent upwards. The reorientation times gradually increases as a 
function of viscosity up to the peak viscous value and interestingly these values further 
increase even after the solvent mixture exhibits reduction in viscosity after the peak value. 
Thus all the probes exhibit different rotational reorientation values for isoviscous points. 
Note that, reorientation times are longer in the DMSO region compared to the water rich 
zone. The studies of the rotational diffusion of the dye molecules in binary solvents showed 
that the rotational relaxation time does not necessarily scale linearly with viscosity when the 
solvent composition is changed. These observations have been interpreted as a 
manifestation of solvent structure on time scales similar to or longer than the time scale of 
solute rotation or as resulting from a change in the dielectric friction through the solvent 
mixture. In some cases these observations have been interpreted as a breakdown of the 
hydrodynamic approximation. The rotational diffusion studies of the dye molecule oxazine 
118 in two binary solvent systems as a function of temperature showed a nonlinear 
dependence of the rotational diffusion on the solvent viscosity when the solvent 
composition is changed (Williams et al., 1994).  
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Fig. 10. Plot of rotational reorientation time with viscosity along with theoretical profile 
including the viscous and the dielectric contribution for C440, C450, C466 and C151 probes 
(Inamdar et al., 2009) 

The linear variation of the rτ  as a function of η  from pure water to the composition of the 
binary mixture when the viscosity reaches its peak is in accordance with the SED theory, 
though it does not account for the large curvature in the profile. The theoretical SED stick 
line shows a sharp hairpin profile. Incorporation of the dielectric friction contribution 
qualitatively mimics the observed profile, with the rτ  being slightly larger in the post peak 
viscosity DMSO rich zone. The fact, that a continuum theory without the consideration of 
any molecular features could reproduce the gross features of the observed profile of rτ vs.η  
is noteworthy. The experimentally observed profile bent upwards yields considerably 
higher rτ  in the DMSO rich zone than the corresponding isoviscous point in the water rich 
zone. This is also reproduced by the theoretical models qualitatively. The pronounced 
difference in the rotational reorientation times at the isoviscous points can be explained only 
on the basis of solvation. It is possible that at the isoviscous points the microstructural 
features in the binary mixture could be different. The dual values of rτ  at isoviscous points 
in the DMSO rich zone are also due to the contributions of dielectric friction at these two 
points being different.  
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Beddard et al. (1981) reported different rotational relaxation times of the dye cresyl violet in 
ethanol water mixture by varying the ethanol water composition i.e., at the same viscosity 
but at different compositions. The observed re-entrance type behavior of the orientational 
relaxation time when plotted against viscosity could not be explained only in terms of non-
ideality in viscosity exhibited in a binary mixture. Beddard et al. also reported that the re-
entrance behavior is strongly dependent on the specific interaction of the solute with the 
solvents. This is because in a system where solute interacts with few different species in a 
binary mixture in a different manner, its rotational relaxation will depend more on the 
composition than on the viscosity of the binary mixture. The role of specific interaction on 
the orientational dynamics has often been discussed in relation to changing boundary 
conditions (Fleming, 1986). We find that the orientational relaxation time of the probe 
molecules when plotted against the solvent viscosity does indeed show re-entrance. Our 
study here re-affirms that for a solute dissolved in a binary mixture, its rotational relaxation 
will depend more on the composition than on the viscosity of the binary mixture and thus 
the re-entrant type behaviour is strongly dependent on the interactions of the solute with 
the two different species in the solvent.  
The rotational dynamics of two kinds of medium sized three dyes-Fluorescein 27(F27) and 
Fluorescein Na(FNa) (both neutral but polar), and Sulforhodamine B(SRB) (anion) has been 
studied in binary mixtures comprising of 1-Propanol and water  at room temperature using 
both steady-state and time resolved fluorescence depolarization techniques. Alcohols have 
both a hydrogen-bonding -OH group and a hydrophobic alkyl group. The latter affects the 
water structure. The objective in studying two neutral and an anion dyes is to compare and 
contrast the rotational dynamics as a function of charge. A nonlinear hook-type profile of 
rotational reorientation times of the probe (τr) as a function of viscosity (η) is observed for all 
three dyes in this binary system, with the rotational reorientation times being longer in 
organic solvent rich zone, compared to the corresponding isoviscous point in water rich 
zone. This is attributed to strong hydrogen bonding between the solute and propanol 
molecules.  
The increase in viscosity as 1-propanol is added to water is sharp with the peak value of 2.70 
mPa s being reached at about 30% mole composition of 1-propanol. The viscosity of 1-
propanol is 1.96 mPa s, the decrease after the post peak point is linear but gradual. The 
dielectric friction contribution in water, amides, and dipolar aprotics is minimal while it 
goes on increasing in alcohols (Krishnamurthy et al, 1993).  
At isoviscous points there are two different τr values and this duality results from different 
values of dielectric frictions at the isoviscous points (Fig. 11). It is seen that both the neutral 
dyes F27 and FNa clearly produce the hook-type profile bent upwards and qualitatively 
mimic the nonhydrodynamic behavior. The reorientation times gradually increase as a 
function of viscosity up to the peak viscous value. τr values decrease after the solvent 
mixture exhibits a reduction in viscosity after the peak value. Note that the reorientation 
times are longer in propanol rich region compared to the water rich zone. In case of SRB 
though it exhibits hook type profile, surprisingly τr values longer in water rich zone in the 
beginning and later probe rotates faster in the intermediate viscous region. In propanol rich 
zone SRB shows similar τr values as those of water rich zone. This may be due to both amino 
groups of SRB are ethylated and the rotational diffusion of this dye was slightly more rapid 
than predicted. Theoretical models mimic this trend qualitatively, though GW & DKS 
models invariably predict a reduced friction and illustrate a hairpin - bending downwards. 
Thus, these models underestimate the friction experienced by the probe. The dual  
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Fig. 11. Plot of rotational reorientation time with viscosity along with theoretical profile 
including viscous contribution for F27 

valuedness of τr at isoviscous points near the organic solvent rich zone were attributed to 
different contributions of dielectric friction at these compositions and to strong hydrogen 
bonding. 
General conclusion and summary 
In this article, an attempt has been made to understand solute-solvent interactions in various 
situations using the powerful fluorescence spectroscopic techniques. The interesting 
observation of faster rotation of nonpolar probes in alcohols compared to alkanes can be 
attributed to large interstitial gaps that may be formed in the solvent medium and because 
of the possible elastic nature of the spatial H-bonding network of large alcohol molecules 
constituting a supramolecular structure. Presumably the exalite molecules will be located 
mainly in these solvophobic regions and thus, can rotate more freely in these gaps and 
experience reduced friction due to decreased viscosity at the point of contact. This actual 
viscosity is highly localized and cannot be measured easily. In such a situation the coupling 
parameter C can be much smaller than Cslip predicted by slip hydrodynamic boundary 
condition. Also, the largest probe E428 following subslip trend in alcohols is surprising. In 
such a situation the microscopic friction of the solvent molecules reduces well below the 
macroscopic value, which may result from either dynamic or structural features of the 
macroscopic solvation environment-giving rise to faster rotation in hydrogen bonding 
solvents. The experimental results indicate that DKS theory also holds well even for larger 
probes up to a radius of 6.3 Å in alkanes. 
In case of polar probes, a faster rotation of the probes is observed for C522B and C138 in 
alcohols compared to C307. In spite of the distinction in structure a coincidental similar 
rotational reorientation times is observed in case of C522B and C138 in alcohols from 
propanol to decanol. Further studies of dielectric friction in alcohols, the observed 
reorientation times of these coumarins could not follow the trend predicted by the theories 
of Nee-Zwanzig and van der Zwan-Hynes. Experimentally and theoretically obtained 
dielectric frictions using NZ and ZH theories, do not agree well.  
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A nonlinear hook-type profile of rotational reorientation times of the probe as a function of 
viscosity is observed for all the dyes in binary mixtures, with the rotational reorientation 
times being longer in organic solvent rich zone, compared to the corresponding isoviscous 
point in water rich zone. This is attributed to strong hydrogen bonding between the solutes 
and DMSO or propanol molecules. Theoretical models mimic this trend qualitatively, 
though GW & DKS models invariably predict a reduced friction and illustrate a hairpin 
profile bending downwards. Thus they underestimate the friction experienced by the probe. 
The dual valuedness of τr at isoviscous points near the organic solvent rich zone were 
attributed to different contributions of dielectric friction at these compositions and to strong 
hydrogen bonding. 
In general, the theoretical models: hydrodynamic as well as those based on dielectric friction 
do not adequately and precisely describe the experimental observations. The theoretical 
description of solute-solvent interaction to explain the experimental observations is yet to 
evolve. The failure of the theoretical models, to explain the experimental results 
quantitatively in specific cases, calls for the formulation of molecular based theories.  
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1. Introduction 
A detailed knowledge of the hydrodynamics of stirred vessels may help improving the 
design of these devices, which is particularly important because stirred vessels are among 
the most widely used equipment in the process industry. 
In the last two decades there was a change of perspective concerning stirred vessels. 
Previous studies were focused on the derivation of correlations able to provide global 
performance indicators (e.g. impeller flow number, power number and mixing time) 
depending on geometric and operational parameters. But recently the attention has been 
focused on the detailed characterization of the flow field and turbulence inside stirred 
vessels (Galletti et al., 2004a), as only such knowledge is thought to improve strongly the 
optimization of stirred vessel design.  
The hydrodynamics of stirred vessels has resulted to be strongly three dimensional, and 
characterised by different temporal and spatial scales which are important for the mixing at 
different levels, i.e. micro-mixing and macro-mixing. 
According to Tatterson (1991) the hydrodynamics of a mechanically agitated vessel can be 
divided at least into three flow systems: 
• impeller flows including discharge flows, trailing vortices behind the blades, etc.; 
• wall flows including impinging jets generated from the impeller, boundary layers, shed 

vortices generated from the baffles, etc.; 
• bulk tank flows such as large recirculation zones. 
Trailing vortices originating behind the impeller blades have been extensively studied for a 
large variety of impellers. For instance for a Rushton turbine (RT) they appear as a pair, 
behind the lower and the upper sides of the impeller blade, and provide a source of 
turbulence that can improve mixing. Assirelli et al. (2005) have shown how micro-mixing 
efficiency can be enhanced when a feeding pipe stationary with the impeller is used to 
release the fed reactant in the region of maximum dissipation rate behind the trailing 
vortices. Such trailing vortices may also play a crucial role in determining gas accumulation 
behind impeller blades in gas-liquid applications, thus affecting pumping and power 
dissipation capacity of the impeller.  
But in the last decade lots of investigations have pointed out that there are other important 
vortices affecting the hydrodynamics of stirred vessels. In particular it was found that the 
flow inside stirred vessels is not steady but characterised by different flow instabilities, 



 
Hydrodynamics – Advanced Topics 

 

228 

which can influence the flow motion in different manners. Their knowledge and 
comprehension is still far from complete, however the mixing optimisation and safe 
operation of the stirred vessel should take into account such flow variations. 
The present chapter aims at summarizing and discussing flow instabilities in mechanically 
agitated stirred vessels trying to highlight findings from our research as well as from other 
relevant works in literature. The topic is extremely wide as flow instabilities have been 
detected with different investigation techniques (both experimental and numerical) and 
analysis tools, in different stirred vessel/impeller configurations.  
Thus investigation techniques and related analysis for the flow instability detection will be 
firstly overviewed. Then a possible classification of flow instabilities will be proposed and 
relevant studies in literature will be discussed. Finally, examples of findings on different 
flow instabilities and their effects on the mixing process will be shown.  

2. Investigation techniques 
Researchers have employed a large variety of investigation techniques for the detection of 
flow instabilities. As such techniques should allow identifying flow instabilities, they should 
be able to detect a change of the flow field (or other relevant variables) with time. Moreover 
a good time resolution is required to allow an accurate signal processing. Regarding this 
point, actually flow instabilities in stirred vessels are generally low frequencies phenomena 
as their frequency is much smaller than the impeller rotational frequency N; so, effectively, 
the needed temporal resolution is not so high. Anyway the acquisition frequency should at 
least fulfil the Nyquist criterion.  
The graph of Fig. 1a summarises the main techniques, classified as experimental and 
numerical, employed so far for the investigation of flow instabilities. A brief description of 
the techniques will be given in the following text in order to highlight the peculiarities of 
their applications to stirred vessels.  
 

    
  (a)             (b) 

Fig. 1. Overview of investigation (a) and analysis (b) techniques for flow instability 
characterization in stirred vessels.  

2.1 Experimental techniques 
Laser Doppler anemometry (LDA) is one of the mostly used experimental technique for 
flow instability detection. LDA is an optical non-intrusive technique for the measurement of 
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the fluid velocity. It is based on the Doppler shift of the light scattered from a ‘seeding’ 
particle, which is chosen to be nearly neutrally buoyant and to efficiently scatter light. LDA 
does not need any calibration and resolves unambiguously the direction of the velocity. 
Moreover it provides high spatial and temporal resolutions. These are very important for 
flow instability detection. In addition, more than one laser Doppler anemometer can be 
combined to perform multi-component measurements. The application of LDA to 
cylindrical stirred vessels requires some arrangement in order to minimize refraction effects 
at the tank walls, so often the cylindrical vessel is placed inside a square trough.  
Particle Image Velocimetry (PIV) is also an optical technique which allows the velocity of a 
fluid to be simultaneously measured throughout a region illuminated by a two-dimensional 
light sheet, thus enabling the instantaneous measurements of two velocity components. 
However recently the use of a stereoscopic approach allows all three velocity components to 
be recorded. So far the temporal resolution of PIV measurements has been limited because 
the update rate of velocity measurements, governed by the camera frame rate and the laser 
pulse rate, was too low. Thus PIV was not suited for the investigation of flow instabilities. 
However recently, high-frame rate PIV systems have been developed allowing flow 
measurements with very high update rates (more than 10 kHz); thus its use for the analysis 
of flow instabilities in stirred vessels has been explored by some investigators. Similarly to 
LDA, also PIV requires the fluid and vessel walls to be transparent as well as actions to 
minimize refraction effects at the tank curvature.  
Different flow visualization techniques have also been used to help clarifying the 
mechanism of flow instabilities. Such flow visualization techniques may simply consist of 
tracing the fluid with particles and recording with a camera a region of the flow illuminated 
by a laser sheet. More sophisticated techniques are able of providing also concentration 
distribution: for example Laser Induced Fluorescence, LIF, uses a fluorescent marker and a 
camera (equipped with a filter corresponding to the wave of fluorescence) which detects the 
fluorescence levels in the liquid.  
In addition to such optical instruments, different mechanical devices have been used in 
literature for the detection of flow instabilities. Such devices are based on the measurements 
of the effect of flow instabilities on some variables. Bruha et al. (1995) employed a 
“tornadometer”, that is a device which allows measuring the temporal variation of the force 
acting on a small target placed into the flow where instabilities are thought to occur. 
Paglianti et al. (2006) proved that flow instabilities in stirred vessels could be detected by 
pressure transducers positioned at the tank walls. The pressure transducers provided time 
series of pressure with a temporal resolution suited for the flow instability detection. Such a 
technique is particularly interesting as it is well suited for industrial applications. Haam et 
al. (1992) identified flow instabilities from the measurement of heat flux and temperature at 
the walls through heat flux sensors and thermocouples. Hasal et al. (2004) measured the 
tangential force acting on the baffles as a function of time by means of mechanical devices. 
Also power number measurements (as for instance through strain gauge techniques) have 
been found to give an indication of flow instabilities related to change in the circulation loop 
(Distelhoff et al., 1995). 

2.2 Numerical techniques 
Numerical models have also been used for the investigation of flow instabilities in stirred 
vessels, especially because of the increasing role of Computational Fluid Dynamics (CFD). 
Logically, since the not steady nature of such instabilities, transient calculation techniques 
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have to be employed. These may be classified in: Unsteady Reynolds-averaged Navier-
Stokes equations (URANS), Large Eddy Simulation (LES) and Direct Numerical Simulation 
(DNS) 
URANS employs the usual Reynolds decomposition, leading to the Reynolds-averaged 
Navier-Stokes equations, but with the transient (unsteady) term retained. Subsequently the 
dependent variables are not only a function of the space coordinates, but also a function of 
time. Moreover, part of the turbulence is modelled and part resolved. URANS have been 
applied to study stirred vessels by Torré et al. (2007) who found indications on the presence 
of flow instabilities from their computations; however their approach was not able to 
identify precessional flow instabilities.  
LES consists of a filtering operation, so that the Navier-Stokes are averaged over the part of 
the energy spectrum which is not computed, that is over the smaller scales. Since the 
remaining large-scale turbulent fluctuations are directly resolved, LES is well suited for 
capturing flow instabilities in stirred vessels, although it is very computationally expensive. 
This has been shown for both single-phase (for example Roussinova et al., 2003, Hartmann 
et al., 2004, Nurtono et al. 2009) and multi-phase (Hartmann et al., 2006) flows.  
DNS consists on the full resolution of the turbulent flow field. The technique has been 
applied by Lavezzo et al. (2009) to an unbaffled stirred vessel with Re = 1686 providing 
evidence of flow instabilities.  

3. Analysis techniques 
The above experimental or modelling investigations have to be analysed with suited tools in 
order to get information on flow instabilities. These consist mainly of signal processing 
techniques, which are applied to raw data, such as LDA recordings of the instantaneous 
velocity, in order to gain information on the characteristics of flow instabilities.  
Two kinds of information have been extracted so far:  
- frequency of the flow instabilities as often they appear as periodic phenomena; 
- relevance of flow instabilities on the flow motion.  
Among the techniques which have been employed in literature for the characterization of 
flow instabilities in stirred vessels, there are (see Fig. 1b):  
- frequency analysis techniques (the Fast Fourier Transforms and the Lomb-Scargle 

periodogram method); 
- time-frequency analysis techniques (Wavelet Transforms); 
- principal component analysis (Proper Orthogonal Decomposition). 
Whereas the first two techniques have been largely used for the determination of the flow 
instability frequency, the latter has been used to evaluate the impact of flow instabilities on 
the motion through the analysis of the most energetic modes of the flow.  

3.1 Frequency analysis 
The Fast Fourier Transform (FFT) decomposes a signal in the time domain into sines and 
cosines, i.e. complex exponentials, in order to evaluate its frequency content. Specifically the 
FFT was developed by Cooley & Tukey (1965) to calculate the Fourier Transform of a K 
samples series with O(Klog2K) operations. Thus FFT is a powerful tool with low 
computational demand, but it can be performed only over data evenly distributed in time. 
In case of LDA recordings, these should be resampled and the original raw time series 
replaced with series uniform in time. As for the resampling techniques, simple methods like 
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the "Nearest Neighbour" or the "Sample and Hold" should be preferred over complex 
methods (e.g. "Linear Interpolation", "Spline Interpolation"), because the latter bias the 
variance of the signal. It should be noticed that the resampled series contains complete 
information about the spectral components up to the Nyquist critical frequency fc=1/2Δ 
where Δ in the sampling interval. At frequencies larger than the Nyquist frequency the 
information on the spectral components is aliased. 
The Lomb-Scargle Periodogram (LSP) method (Lomb, 1976, Scargle, 1982) performs directly 
on unevenly sampled data. It allows analysing frequency components larger than the 
Nyquist critical frequency: this is possible because in irregularly spaced series there are a 
few data spaced much closer than the average sampling rate, removing ambiguity from any 
aliasing. The method is much more computational expensive than FFTs, requiring O(102K2) 
operations.  
It is worthwhile discussing the suitability of the analysis techniques described above for the 
investigation of flow instabilities and what are the main parameters to be considered. Flow 
instabilities are low frequency phenomena, therefore we are interested in the low frequency 
region of the frequency spectrum. The lowest frequency which can be resolved with both 
the FFT and Lomb-Scargle method is inversely related to the acquisition time; hence longer 
sampling times yield better frequency resolutions. This explains the long observations made 
for flow instabilities detection in stirred vessels. In our works on flow instabilities we have 
used typically LDA recordings at least 800 s long. In other words the sampling time should 
be long enough to cover a few flow instabilities cycles. As the time span covered by a series 
is proportional to the number of samples, the application of the LSP to long series requires 
strong computational effort.  
A benchmark between the two methods is provided in Galletti (2005) and shown in Fig. 2.  
 

 
Fig. 2. Frequency of the main and the secondary peak in the low frequency region of the 
spectrum calculated with the Lomb-Scargle method as a function of the number of samples. 
RT, D/T = 0.33, C/T = 0.5, Re = 27,000. Galletti (2005). 

The solid squares show the frequency f of the main peak identified in the spectrum calculated 
with the LSP as function of the number of samples used for the analysis. It can be observed 
that f is scattered for low numbers of samples, and it approaches asymptotically the value of f 
= 0.073 Hz (the same of the FFT analysis over the whole acquisition time of 800 s with 644,000 
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samples) as the number of samples increases. The empty triangles indicate the presence of 
further low frequency peaks. The main fact to be aware of is that low time intervals conceal the 
flow instabilities by covering only a portion of the fluctuations.  

3.2 Time-frequency analysis 
Both FFT and LSP inform how much of each frequency component exists in the signal, but 
they do not tell us when in time these frequencies occur in the signal. For transient flows it 
may be of interest the time localisation of the spectral component. The Wavelet Transform 
(WT) is capable of providing the time and frequency information simultaneously, hence it 
gives a time-frequency representation of the signal (Daubechies, 1990, Torrence and Compo, 
1998). The WT breaks the signal into its "Wavelets", that are functions obtained from the 
scaling and the shifting of the "mother Wavelet" ψ. The WT has been proposed for the 
investigation of stirred vessels by Galletti et al. (2003) and subsequently applied by Roy et 
al. (2010).  

3.3 Proper orthogonal decomposition 
POD is a linear procedure, based on temporal and spatial correlation analysis, which allows 
to decompose a set of signals into a modal base, with the first mode being the most energetic 
(related to large-scale structures thus trailing vortices and flow instabilities) and the last 
being the least energetic (smaller scales of turbulence). It was first applied for MI 
characterisation by Hasal et al. (2004) and latterly by Ducci & Yianneskis (2007). An in-depth 
explanation of the methodology is given in Berkooz et al. (1993). 

4. Classification of flow instabilities 
A possible classification of flow instabilities in stirred vessels is reported in Fig. 3. The graph 
is not aimed at imposing a classification of flow instabilities, however it suggests a way of 
interpretation which may be regarded as a first effort to comprehend all possible 
instabilities.  
 

 
Fig. 3. Possible classification of flow instabilities in stirred vessels. 
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4.1 Change in circulation pattern 
A first kind of flow instability (see left-hand side of the diagram of Fig. 3) manifests as a real 
change in the circulation pattern inside the tank. Two main sources of such a change have 
been identified: a variation of the Reynolds number (Re) or a variation of the 
impeller/vessel geometrical configuration.  
In relation to the former source, Nouri & Whitelaw (1990) reported a transition due to Re 
variations in the flow pattern induced by a 60° PBT with D = T/3 set at C = T/3 in a vessel 
of T = 0.144 m. For non-Newtonian fluids a flow pattern transition from a radial to an axial 
flow was observed as the Re was increased up to Re = 4,800. For Newtonian fluids the 
authors observed that the flow pattern transition occurred at about Re = 650. This value was 
also confirmed by the power number measurements through strain-gauges carried out by 
Distelhoff et al. (1995). Similar investigations on such transition may be found in the works 
of Hockey (1990) and Hockey & Nouri (1996). 
Schäfer et al. (1998) observed by means of flow visualisation the flow discharged by a 45° 
PBT to be directed axially at higher Re and radially at lower Re. The flow stream direction 
was unstable, varying from radial to axial, for Re = 490-510. A similar flow transition was 
also indicated by Bakker et al. (1997) who predicted with CFD techniques the flow pattern 
generated from a 4-bladed 45° PBT of diameter D = T/3 and set at C = T/3 inside a tank of T 
= 0.3 m. The regime was laminar, the Reynolds number being varied between 40 and 1,200. 
The impeller discharge stream was directed radially for low Re numbers, however for Re 
larger than 400 the flow became more axial, impinging on the vessel base rather than on the 
walls.  
A second source of instabilities, manifesting as a flow pattern change, is associated with 
variations of the impeller/vessel geometrical configuration, which means either variations 
of the distance of the impeller from the vessel bottom (C/T) or variation of the impeller 
diameter (D/T) or a combination of both variations.  
This kind of instabilities were firstly noticed by Nienow (1968) who observed a dependency 
on the clearance of the impeller rotational speed required to suspend the particles (Njs) in a 
solid-liquid vessel equipped with a D = 0.35T RT. He observed that for C < T/6 the pattern 
was different (the discharge stream was directed downwards towards the vessel corners) 
from the typical radial flow pattern, providing low Njs values. Baldi et al. (1978) also 
observed a decrease of the Njs with the impeller off-bottom clearance for a 8-bladed turbine. 
Conti et al. (1981) found a sudden decrease of the power consumption associated with the 
change in the circulation pattern when lowering the impeller clearance of a 8-bladed 
turbine. The aforementioned authors concluded that the equation given by Zwietering 
(1958) for the calculation of the Njs should be corrected in order to take into account the 
dependency on C/T.  
The dependency of the power number on the impeller off-bottom clearance was also 
observed by Tiljander & Theliander (1993), who measured the power consumption of two 
PBT of different sizes, i.e. D = T/3 and D = T/2, and a high flow impeller of D = T/2. The 
visual observation of the flow pattern revealed that at the transition point between the axial 
and the radial flow patterns, the circulation inside the vessel appears chaotic.  
Ibrahim & Nienow (1996) investigated the efficiency of different impellers, i.e. a RT, a PBT 
pumping either upwards or downwards, a Chemineer HE3 and a Lightnin A310 hydrofoil 
pumping downwards and a Ekato Intermig agitator, for solids suspension. For the RT, the 
aforementioned authors observed a sudden decrease of both the impeller speed and the 
mean dissipation rate required to just suspend the particles as the clearance was decreased 
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from C = T/3 down to C = T/6 for the impeller having D = T/3; such a clearance 
corresponded to the transition from the radial flow pattern to the axial.  
Subsequently, a strong influence of the clearance on the suspension of particles was 
confirmed also by Myers et al. (1996) for three axial impellers. If the clearance was 
sufficiently high the discharge flow impinged on the vessel wall rather then the base, 
leading to a secondary circulation loop which was directed radially inward at the vessel 
base and returned upwards to the impeller at the centre of the vessel. Such a reversed flow 
occurred for C > 0.45T for a PBT of diameter D = 0.41T and for C > 0.25T for a straight-blade 
turbine of the same diameter, whereas only for very high clearances (C > 0.95T) for a high 
efficiency Chemineer impeller having the same diameter. 
Bakker et al. (1998) reported that the flow pattern generated by either a PBT or a three-blade 
high efficiency impeller depended on C/T and D/T, influencing the suspension of the 
particles.  
Armenante & Nagamine (1998) determined the Njs and the power consumption of four 
impellers set at low off-bottom clearances, typically C < T/4. For radial impellers, i.e. a RT 
and a flat blade turbine, they observed that the clearance at which the change in the flow 
pattern from a radial to an axial type occurred was a function of both impeller type and size, 
i.e. D/T. In particular the flow pattern changed at lower C/T for larger impellers. This was 
in contrast with previous works (see for example Conti et al., 1981) which reported a 
clearance of transition independent on D/T. For instance Armenante & Nagamine (1998) 
found the flow pattern transition to occur at 0.16 < C/T < 0.19 for a Rushton turbine with a 
diameter D = 0.217T and at 0.13 < C/T < 0.16 for a D = 0.348T RT. For the flat blade turbine 
the clearances at which the transition took places were higher, being of 0.22-0.24 and 0.19-
0.21 for the two impeller sizes D = 0.217T and D = 0.348T, respectively. 
Sharma & Shaikh (2003) provided measurements of both Njs and power consumption of 
solids suspension in stirred tanks equipped with 45° PBT with 4 and 6 blades. They plotted 
the critical speed of suspension Njs as a function of C/T distinguishing three regions, 
according to the manner the critical suspension speed varied with the distance of the 
impeller from the vessel base. As the impellers were operating very close to the vessel base, 
the Njs was observed to be constant with C/T (first region); then for higher clearances Njs 
increased with C/T because the energy available for suspension decreased when increasing 
the distance of the impeller from the vessel base (second region), and finally (third region) 
for high clearances the Njs increased with C/T with a slope higher than that of the second 
region. The onset of third region corresponded to the clearance at which the flow pattern 
changed from the axial to the radial flow type. In addition the aforementioned authors 
observed that as the flow pattern changed the particles were alternatively collected at the 
tank base in broad streaks and then suddenly dispersed with a certain periodicity. They 
concluded that a kind of instabilities occurred and speculated that maybe the PBT behaved 
successively as a radial and axial flow impellers. 
The influence of C on the flow pattern has been intensively studied also for single-phase 
flow in stirred tanks. Yianneskis et al. (1987) showed that the impeller off-bottom clearance 
affects the inclination of the impeller stream of a Rushton turbine of diameter D = T/3. In 
particular the discharge angle varied from 7.5° with respect to the horizontal plane for C = 
T/4 down to 2.5° for C = T/2.  
Jaworski et al. (1991) measured with LDA the flow patterns of a 6-bladed 45° PBT having a 
diameter D = T/3 for two impeller clearances, C = T/4 and C = T/2. For the lower impeller 
clearance, the impeller stream impinged on the vessel base and generated an intensive radial 
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circulation from the vessel axis towards the walls. For the higher clearance the impeller 
stream turned upwards before reaching the base of the vessel, generating also a reverse flow 
directed radially from the walls towards the vessel axis at the base of the vessel.  
Kresta & Wood (1993) measured the mean flow field of a vessel stirred with a 4-bladed 45° 
PBT for two impeller sizes, i.e. D = T/3 and D = T/2, and varying the impeller clearance 
systematically from T/20 up to T/2. They observed that the circulation pattern underwent a 
transition at C/D = 0.6, and for the larger impeller (D = T/2) such a transition was 
accompanied by a deflection of the inclination of the discharge stream toward the 
horizontal.  
Ibrahim & Nienow (1995) measured the power number of different impellers for a wide 
range of Reynolds number, i.e. 40 < Re < 50,000, in Newtonian fluids. For a D = T/3 RT they 
observed that the power numbers with clearances of C = T/3 and C = T/4 was the same for 
all Re; however for C = T/6 the discharge flow was axial rather than radial and the 
associated power number was considerably lower (by about 25%) for all the range of Re 
investigated. For a D = T/2 RT a radial discharge flow was still observed at C = T/6 for all 
Re except for those with the highest viscosity (1 Pa·s).  
Rutherford et al. (1996a) investigated the flow pattern generated by a dual Rushton impeller 
and observed different circulation patterns depending on the impeller clearance of the lower 
impeller and the separations between the two impellers, observing three stable flow 
patterns: "parallel flow", "merging flow" and "diverging flow" patterns.  
Mao et al. (1997) measured with LDA the flow pattern generated from various PBT of 
different sizes in the range of 0.32 < D/T < 0.6 and number of blades varying from 2 to 6 in a 
stirred vessel in turbulent regime (Re > 20,000). They used two impeller off-bottom 
clearances, C = T/3 and C = T/2, observing a secondary circulation loop with the higher 
clearance.  
Montante et al. (1999) provided a detailed investigation of the flow field generated by D = 
T/3 RT placed at different off-bottom clearances varying from C = 0.12T to C = 0.33T. They 
found that the conventional radial flow pattern (termed “double-loop” pattern) occurred for 
C = 0.20T, but it was replaced by an axial flow pattern (termed “single loop” pattern) as the 
clearance was decreased to C = 0.15T. A reduction of the power number from 4.80-4.85 for 
C/T = 0.25-0.33 down to 3.80 as the clearance was decreased to C/T = 0.12-0.15 was 
reported, so that the power consumption was reduced by about 30% as the flow underwent 
a transition from the double- to the single-loop pattern.  

4.1.1 Clearance instabilities (CIs) 
Galletti et al. (2003, 2005a, 2005b) studied the flow pattern transition for a D = T/3 RT and 
identified a kind of flow instabilities, which will be denoted as CIs (clearance instability). 
The authors found that the flow pattern transition (single- to double-loop pattern) occurred 
for C/T = 0.17-0.2, thus within an interval of clearances of about 0.03T. Such C interval was 
dependent on the fluid properties, lower clearances being observed for more viscous fluids. 
At clearances of flow pattern transition the velocity time series indicated flow pattern 
instabilities as periods of double-loop regime, single-loop regime and "transitional" state 
that followed each other. When the flow underwent a change from one type of circulation to 
another, the transitional state was always present and separated in time the single- from the 
double-loop flow regime. Nevertheless, a flow pattern could change firstly into the 
transitional state and afterwards revert to the original flow regime, without changing the 
type of circulation. The occurrence of the three flow regimes was shown to be random, and 



 
Hydrodynamics – Advanced Topics 

 

236 

their lifetimes could be significant, often of the order of few minutes. The time duration of 
the three flow regimes depended on the impeller clearance, higher clearances promoting the 
double-loop regime. Moreover the time duration of the three flow regimes depended on the 
impeller rotational speed, higher impeller rotational speeds promoting the double-loop 
regime. 
An example of flow pattern transition is shown in the LDA time series of Fig. 4a which 
indicated different regimes, that can be attributed to the double-loop, transitional and 
single-loop patterns. The most surprising finding was that within the transitional state an 
instability was manifested as a periodic fluctuation of the flow between the double and the 
single-loop regimes, characterised by a well-defined frequency f. Such frequency was 
linearly dependent on the impeller speed according to f’ = f/N = 0.12.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Wavelet power analysis of axial velocity data: (a) time series; (b) Wavelet power 
spectrum; (c) dependence of frequency on impeller clearance (B is the highest, F the lowest 
clearance). Taken from Galletti et al. (2003). 
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Therefore the flow pattern transition which occurs for a RT when changing the impeller 
position is governed by two types of instability. The first one manifests as a random 
succession of double-loop regime, single-loop regime and transitional state over large time 
intervals. The second one is the instability encountered during the transitional state, 
characterised by a well-defined periodicity of the order of few seconds.  
The exact nature of the clearance-related instabilities is not fully understood, but it is not 
likely to be related to the turbulence content of the flows, as the phenomenon is 
characterised by a single frequency even for the lowest Re range studied with the most 
viscous fluid, for which Re is around 5,200 and the corresponding flows should be mostly 
laminar. Some evidences as the increase of f’ with lowering C/T (or increasing the impeller 
stream mean velocity by reducing the impeller blade thickness to diameter ratio tb/D) may 
confirm that it is the interaction between the impeller discharge stream and the vessel 
base/walls to play a major role in the formation of such instability. 

4.2 Macro-instabilities 
Another kind of instability (see the right-hand side of the diagram of Fig. 3) manifests itself 
as large temporal and spatial variations of the flow superimposed to the mean flow patterns, 
thus such flow instabilities are called “macro-instabilities”. On the basis of results achieved 
during our work and from other works in literature it was chosen to divide this kind of flow 
instability into two subgroups, because we think that there were two different underlying 
mechanisms driving such instabilities.  

4.2.1 Precessional macro-instabilities (P-MIs) 
The first subgroup comprehends flow instabilities which seem to be associated with a vortex 
moving about the shaft. The first evidence of this vortex was provided by Yianneskis et al. 
(1987) who noticed that the vortex motion produced large temporal and spatial fluctuations 
superimposed on the mean flow pattern. A similar vortex was also observed by Haam et al. 
(1992) cited earlier. 
Precessional MIs were investigated by Nikiforaki et al. (2003), who used two different 
impellers (RT and PBT) having the same diameter D = T/3 for Re > 20,000. The frequency of 
the macro-instabilities was found to be linearly related to the impeller speed with f’ = f/N = 
0.015-0.020, independently on impeller clearance and design. In a more recent work 
Nikiforaki et al. (2004) studied the effect of operating parameters on macro-instabilities. In 
particular they observed the presence of other frequencies varying from f’= 0.04-0.15 , as the 
Reynolds number was reduced. 
Hartmann et al. (2004) performed a LES simulation of the turbulent flow (Re = 20,000 and 
30,000) in a vessel agitated with a D = T/3 RT set at C = T/2. The geometries of the vessel 
and impeller were identical to those used for the experiments of Nikiforaki et al. (2003). The 
simulation indicated the presence of a vortical structure moving round the vessel centreline 
in the same direction as the impeller. Such structure was observed both below and above the 
impeller (axial locations of z/T = 0.12 and z/T = 0.88 were monitored), however the two 
vortices were moving with a mutual phase difference. The frequency associated with the 
vortices was calculated to be f’ = 0.0255, therefore slightly higher than the 0.015-0.02 
reported by Nikiforaki et al. (2003). The authors concluded that this may encourage an 
improvement of the sub-scale grid and/or the numerical settings.  
Importantly, the presence of a phase shift between the precessing vortices below and above 
the impeller was confirmed by the LDA experiments of Micheletti & Yianneskis (2004). 
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These authors used a cross-correlation method between data taken in the upper and lower 
parts of the vessel, and estimated a phase difference between the vortices in the two 
locations of approximately 180°.  
The presence of the precessing vortex was assessed also in a solid-liquid system by the LES 
simulation of Derksen (2003).  
Hasal et al. (2004) investigated flow instabilities with a Rushton turbine and a pitched blade 
turbine, both of D = T/3 with the proper orthogonal decomposition analysis. They 
confirmed the presence of the precessing vortex, however they found different f’ values 
depending on the Re. In particular f’ values akin to those of Nikiforaki et al. (2003) were 
observed for high Re, whereas higher values, i.e. f’ = 0.06-0.09 were found for low Re. 
Galletti et al. (2004b) investigated macro-instabilities stemming from the precessional 
motion of a vortex about the shaft for different impellers, geometries and flow regimes. The 
authors confirmed that the P-MI frequency is linearly dependent on the impeller rotational 
speed, however they indicated that different values of the proportionality constant between 
MI frequency and impeller rotational speed were found for the laminar and turbulent flow 
regimes, indicating different behaviour of MIs depending on the flow Re (see Fig. 5a). For 
intermediate (transitional) regions two characteristic frequencies were observed, confirming 
the presence of two phenomena. In particular in the laminar flow region P-MIs occurred 
with a non-dimensional frequency f’ about 7-8 times greater than that observed for the 
turbulent region. This was proved for two RTs (D/T = 0.33 and 0.41 RT) as well as for a D/T 
= 0.46 PBT. Thus the impeller design does not affect P-MIs for both laminar and turbulent 
regions. The impeller off-bottom clearance does not affect significantly the P-MI frequency 
for the Rushton turbine and the pitched blade turbine (see for instance Fig. 5b). However 
differences in the regions where P-MIs are stronger may be found, as for instance lower 
impeller clearances originated weaker P-MIs near the liquid surface. 
 

   
              (a)     (b) 

Fig. 5. (a) Non-dimensional macro-instability frequency as a function of the impeller 
Reynolds number. RT, D/T = 0.41, C/T = 0.5. (b) Macro-instability frequency as a function 
of the impeller rotational speed for different clearances. RT, D/T = 0.41. Galletti (2005). 

Importantly, Galletti et al. (2004b) found that the MI frequency is affected by the impeller 
diameter. For the laminar regime a linear dependence of the non-dimensional macro-
instability frequency on the impeller to tank diameter ratio was established:  
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A deep clarification of precessional MIs triggering mechanism in both laminar and 
turbulent regimes was provided by Ducci & Yianneskis (2007) for a D = T/3 RT placed at 
C = T/2. The authors used 2-point LDA and a 2-D PIV with a 13kHz camera. Through a 
vortex identification and tracking technique, the authors showed that P-MIs stem from a 
precessional vortex moving around the vessel axis with f’ = 0.0174 for the turbulent 
regime. In laminar regime the frequency corresponding to a precession period was higher, 
of about f’ = 0.13. The slight differences on the frequencies with the work of Galletti et al. 
(2004b) may be imputed to the different spectral analysis. For instance in the vortex 
tracking method the frequency was evaluated from the time needed to a vortex to 
complete 360°, whereas the FFT analysis of Galletti et al. (2004b) covered several MI 
cycles. But importantly Ducci & Yianneskis (2007) showed that in the laminar regime the 
vortex precessional motion was much closer to the axis than in turbulent regime (for 
which the vortex tends to stay rather far from the axis). In addition to that the authors 
showed a change in the flow pattern between the laminar and turbulent conditions, which 
affects the precessional MI frequency.  
In a later work Ducci et al. (2008) investigated also the transitional regime showing the 
interaction between the two frequency instabilities (f’ = 0.1 and f’ = 0.02 of the laminar and 
turbulent regime, respectively). They found that the two simultaneous instabilities are 
associated to two different types of perturbation of the main mean flow: an off-centering 
instability  that results in a precession of the vortex core centre with a f’ = 0.02 and a 
stretching instability that induces an elongation of the vortex core along a direction that is 
rotating with f’ = 0.1 around the vessel axis. For higher Re, the authors identified an 
interaction between the perturbations of the mean vortex core associated to f’ = 0.02 off-
centering structures and a f’ = 0.04 stretching/squeezing instability. 
A deep investigation of precessional MIs was also carried out by the same group 
(Doulgerakis et al., 2011) for an axial impeller (PBT) with D = T/2 placed at C = T/2 with Re 
= 28,000. The MI frequency distribution across the vessel indicated the presence of many 
frequencies reported before in literature. However the two dominant frequencies were f’ = 
0.1 and f’ = 0.2. The POD analysis showed that the first mode can be seen as a radial off-
center perturbation of the mean flow that results in a precession of the vortex core around 
the impeller axis with f’ = 0.1. The second mode is an instability which stretches/squeezes 
the vortex core in a direction that is rotating with f’ = 0.1. Importantly also for the PBT, the 
higher frequency was exactly double than the lower one as for the RT case. This would be 
also in agreement with many spectral analysis reported in Galletti (2005) which showed the 
presence of an additional peak frequency about the double of the P-MI frequency.  
Kilander et al. (2006) identified through LSP analysis of LDA data frequencies with f’ = 0.025 
for the turbulent regime (thus in fully agreement with the work by Hartmaan et al., 2006) in 
a vessel agitated by a D = T/3 RT. 
Lately, many other computational methods confirmed also the presence of precessional MIs.  
Nurtono et al. (2009) obtained from LES simulations a frequency f’ = 0.0125 for a D=T/3 RT 
placed at C = T/2 for Re = 40,000.  
The DNS simulations of Lavezzo et al. (2009) for an unbaffled vessel equipped with a 8-
blade paddle impeller indicated the presence of a spiralling vortex with f’ = 0.162 for Re = 
1686. The application of Eq. [1] developed by Galletti et al. (2004b) to the above case would 
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give a higher frequency f’ = 0.24, however it should be pointed out that the equation was 
developed for baffled configurations. 

4.2.2 Jet impingement macro-instabilities (J-MIs) 
Other evidence of large temporal and spatial variations of the flow macro-instabilities have 
been reported in the last decade and they not always seem to  be related to a precessional 
vortex.  
Bruha et al. (1995) used a device called “tornadometer” to estimate the flow instabilities 
induced by a 6-bladed 45° PBT of D = 0.3T set at C = 0.35T. The target was axially located 
above the impeller at z/C = 1.2 and 1.4 and at radial distance equal to the impeller radius. 
The aforementioned authors found a linear relation between the instability frequency f and 
the impeller rotational speed N, according to f = -0.040 N +0.50. In a later work (Bruha et al., 
1996) the same authors reported a linear dependence of the MI frequency on N (f’ = 0.043-
0.0048) for Re values above 5,000. No flow-instabilities were noted for Re < 200 and an 
increase in f’ was observed for 200 < Re < 5,000.  
Montes et al. (1997) studied with LDA the flow instabilities in the vicinity of the impeller. 
induced by a 6-bladed 45° PBT of D = 0.33T set at C = 0.35T and observed different values 
for f’ depending on the Reynolds number: f’ = 0.09 for Re = 1140 and f’ = 0.0575 for Re = 
75,000. They suggested that macro-instabilities appear as the switching between one loop 
and two or many loops, taking place between the impeller and the free surface and they are 
able to alter this surface. This leads to different flow patterns in front of the baffles or 
between two adjacent baffles. The mechanism is complex and three-dimensional but the 
large vortices clearly appear in a regular way, with a well defined frequency. Hasal et al. 
(2000) used the proper orthogonal decomposition to analyse LDA data observed for a PBT 
and found a f’ = 0.087 for Re = 750 and Re = 1,200, and a value of 0.057 for Re = 75,000. In 
addition they noticed that the fraction of the total kinetic energy carried by the flow 
instabilities (relative magnitude) varied with the location inside the stirred vessel, they 
being stronger in the central and wall regions below the impeller but weaker in the 
discharge flow from the impeller. 
Myers et al. (1997) used digital PIV to investigate flow instabilities in a stirred tank 
equipped with two different impellers: a 4-bladed 45° PBT of D = 0.35T and a Chemineer 
HE-3 of D = 0.39T. The PBT was set at C = 0.46T and 0.33T, whereas the Chemineer HE-3 
was set at C = 0.33T. The Reynolds number was ranging between 6,190 and 13,100. For the 
higher clearance, i.e. C = 0.46T, the PBT showed flow fluctuations of about 40 s for an 
impeller rotational speed N = 60 rpm, therefore f’ = 0.025. The same impeller set at the lower 
clearance, C = 0.33T, showed more stable flow fields, with not very clear peaks in the low 
frequency region of the spectra, at around f’ = 0.07-0.011. The Chemineer HE-3 impeller 
showed fluctuations of much longer periods than those of the PBT.  
Roussinova et al. (2000, 2001) performed LDA measurements in two tank sizes (T = 0.24 and 
1.22 m), using various impeller types, impeller sizes, clearances, number of baffles (2 and 4) 
and working fluids in fully turbulent regime. For a 45° PBT of D = T/2 they observed a 
macro-instability non-dimensional frequency of f’ = 0.186. Such frequency was coherent as 
the PBT was set at C = 0.25T, and such a configuration was called "resonant" geometry, 
whereas a broad low frequency band was observed for different clearances. The same 
authors performed also a LES of the vessel stirred by a PBT and confirmed the above non 
dimensional frequency value. In a later work Roussinova et al. (2003) identified three 
possible mechanisms triggering the above flow instabilities: the impingement of the jet-like 
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impeller stream on either the vessel walls or bottom, converging radial flow at the vessel 
bottom from the baffles and shedding of trailing vortices from the impeller blades. For the 
resonant geometry, the first mechanism coincided with the impingement of the discharge 
stream on the vessel corner, generating pressure waves reflected back towards the impeller. 
The impingement jet frequency was approached with a dimensional analysis based on the 
Strouhal number. We well denote such flow instabilities as jet impingement instabilities (J-
MIs). In a later investigation Roussinova et al. (2004) extended the analysis to different axial 
impellers. In such work the authors used the LSP method for the spectral analysis.  
Paglianti et al. (2006) analysed literature data on MIs as well as comprehensive data 
obtained from measurements of wall pressure time series, and develop a simple model 
(based on a flow number) for predicting the MI frequency due to impinging jets (J-MI).  
Also Galletti et al. (2005b) investigated flow instability for a PBT and detected a f’ = 0.187 
(thus akin the Roussinova et al., 2003). Such instabilities were found to prevail in the region 
close to the impeller (just above it and below it in the discharged direction).  
Nurtono et al. (2009) found a similar frequency f’ = 0.185 from LES modelling of a D=T/3 
PBT placed at C = T/2 at Re = 40,000.  
The LES results on different impellers (DT, PBTD60, PBTD45, PBTD30 and HF) from 
Murthy & Joshi (2008) showed the presence of J-MIs with f’ = 0.13-0.2. Moreover they 
observed a frequency f’ = 0.04–0.07, which lies in between the precessional and the jet 
instability; such frequency was attributed to the interaction of precessing vortex instability 
with either the mean flow or jet/circulation instabilities. 
Roy et al. (2010) investigated through both experimental (PIV) and numerical (LES) 
techniques, the flow induced by a PBT impeller at different Reynolds numbers (Re = 44,000, 
88,000 and 132,000). They found low frequency flow instabilities with frequencies of about f’ 
= 0.2. They could not resolve lower frequencies because of the short observation (due to 
computational cost of LES models) of their simulations. The authors showed changes in the 
three-dimensional flow pattern during different phases of the macro-instability cycle. They 
concluded that one mechanism driving flow instabilities was the interaction of the impeller 
jet stream with the tank baffles. The flow-instabilities were also observed to affect the 
dynamics of trailing edge vortices. 
More recently Galletti & Brunazzi (2008) investigated through LDA and flow visualisation 
the flow features of an unbaffled vessel stirred by an eccentrically positioned Rushton 
turbine. The flow field evidenced two main vortices: one departing from above the impeller 
towards the top of the vessel and one originating from the impeller blades towards the 
vessel bottom. The former vortex was observed to dominate all vessel motion, leading to a 
strong circumferential flow around it.  
The frequency analysis of LDA data indicated the presence of well defined peaks in the 
frequency spectra of velocity recordings. In particular three characteristic frequencies were 
observed in different locations across the vessel: f’ = 0.105, 0.155 and 0.94. Specifically, the f’ 
= 0.155 and 0.105 frequencies were related to the periodic movements of the upper and 
lower vortices’ axis, respectively, which are also well visible from flow visualization 
experiments (see Fig. 6a and Fig. 6b, respectively). The f’ = 0.94 frequency was explained by 
considering the vortical structure – shaft interaction, which occurs in eccentric configuration 
and leads to vortex shedding phenomena. The authors provided an interpretation based on 
the Strouhal number. 
In a later work (Galletti et al., 2009) the effect of blade thickness tb was investigated, finding 
that for a thicker impeller (tb/D = 0.05) the frequency of the upper vortex movement was  
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   (a)    (b)  

Fig. 6. Frames taken from flow visualisation experiments with sketches at N = 400 rpm 
(from Galletti & Brunazzi, 2008). Unbaffled vessel, RT, eccentricity E/T =0.21, C/T= 0.33, , 
D/T = 0.33, tb/D = 0.01. 

lower, i.e. f’ = 0.143 than for the thinner one (f’ = 0.155 for tb/D = 0.01). The origin of the 
above instabilities in not fully clarified. The frequencies are one order of magnitude higher 
than the P-MIs frequencies. The values of f’ found are more similar to frequencies typical of 
J-MIs. Actually the eccentric position of the shaft and the consequently reduced distance 
between the impeller blade tip and the vessel boundaries, is likely to enhance the strength of 
the impeller discharged stream – wall interaction. In such a case, resulting flow instabilities 
will show a frequency which is expected to increase with increasing the velocity of the 
impeller discharged stream (see the flow-instability analysis in terms of pumping number 
by Paglianti et al., 2006, and/or peak velocity by Roussinova et al., 2003), thus with 
decreasing the blade thickness (Rutherford et al., 1996b).  

5. Effect of flow instabilities 
Flow instabilities may affect mixing operations in mechanically agitated vessels in different 
manners.  
Since the energetic content of J-MIs may be significant, they can exert strong forces on the 
solid surfaces immersed in the stirred tank, i.e. the shaft, baffles, heating and cooling coils, 
etc. (Hasal et al., 2004). These forces may cause mechanical failure of the equipment and 
therefore they should be taken into account in the design of industrial-scale stirred 
vessels.  
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However except for such drawbacks, MIs may be beneficially utilized to improve mixing, 
provided that their phenomenology is well understood.  
It has been proved than flow instabilities in stirred vessels can have a direct effect on overall 
parameters, which are fundamental for the design practice. The different studies on the 
change of circulation pattern (mentioned in section 4.1) have evidenced that such change is 
accompanied by a change of power number. In case of solid suspension, changes in the Njs 
is observed. Thus the knowledge of parameters affecting the circulation change may help 
optimising solid-liquid operations. Moreover, the heat flux studies of Haam et al. (1992) 
showed that precessional MIs may induce a variation of the heat transfer coefficient up to 
68% near the surface. 
Macro-instabilities may have beneficial implications for mixing process operation and 
efficiency as such flow motions can enhance mixing through mean-flow variations. For 
example, the associated low-frequency, high-amplitude oscillatory motions in regions of low 
turbulence in a vessel, have the capability of transporting substances fed to a mixing process 
over relatively long distances, as demonstrated by Larsson et al. (1996). These authors 
measured glucose concentration in a cultivation of Saccharomyces Cerevisiae and observed 
fluctuations of glucose concentration which were more pronounced as the feed was located 
in a stagnant area rather than in the well-mixed impeller area. Therefore flow instabilities 
may help destroying segregated zones inside the tank. Ducci & Yianneskis (2007) showed 
that the mixing time could be reduced even by 30% if the tracer is inserted at or near the MI 
vortex core. Houcine et al. (1999) reported with LIF a feedstream jet intermittency in a 
continuous stirred tank reactor due to MIs. Recently also Galletti et al. (2009) observed from 
decolourisation experiments in an eccentrically agitated unbaffled vessel that the flow 
instability oscillations help the transport of reactants far away if these are fed in 
correspondence of the vortices shown in Fig. 6. 
Subsequently MIs have similar effects to those reported for laminar mixing in stirred tanks 
by Murakami et al. (1980), who observed that additional raising and lowering of a rotating 
impeller produced unsteady mean flow motions that either destroyed segregated regions or 
prevented them from forming, and could produce desired mixing times with energy savings 
of up to 90% in comparison to normal impeller operation. Later Nomura et al. (1997) 
observed that the reversal of the rotational direction of an impeller could also decrease 
mixing times as the additional raising or lowering of the impeller.  
For a solid-liquid system (solid volume fractions up to 3.6%) agitated by a D = T/3 RT in 
turbulent regime (Re = 100,000 and 150,000) Derksen (2003) showed that the precessing 
vortex may help the resuspension of particles lying on the bottom of the tank, thus 
enhancing the mass transfer. 
Guillard et al. (2000a) carried out LIF experiments on a stirred tank equipped with two RT  
observing large time scale oscillations of the concentration, induced by an interaction 
between the flows from the impeller and a baffle. They argued that circulation times can be 
altered when the flow direction changes, the turbulence levels measured with stationary 
probes can be significantly broadened and thus can provide an erroneous interpretation of 
the true levels of turbulence in a tank, and mixing in otherwise quiescent regions can be 
significantly enhanced due to the presence of flow variations (Guillard et al., 2000b). 
Knoweledge of true levels of turbulence is needed for the optimum design of micro-mixing 
operations (as in cases of chemical reactions). Also Nikiforaki et al. (2003) observed that P-
MIs can broaden real turbulence levels up to 25% for a PBT.  
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Actually the problem is rather complex as Galletti et al. (2005b) as well other investigators 
(e.g. Ducci & Yianneskis, 2007, Roussinova et al., 2004) showed that different kinds of 
macro-instabilities may be present simultaneously in stirred vessels. For instance Galletti 
et al. (2005b) studied simultaneously with 2-point LDA the combined effect of 
precessional MIs and flow instabilities stemming from impeller clearance variations (CIs) 
in different regions of a vessel stirred with a RT. Table 1 summarizes the flow instability 
characteristics. The authors removed from the total energetic content of a LDA signal, the 
contribution of blade passage, P-MIs and CIs, evaluating the real turbulent energy. They 
found that the occurrence and energetic content of P-MIs and CIs depend on both 
measurement location and flow regime. In particular, near the vessel surface P-MIs are 
stronger, with energetic contents that reach 50% of the turbulent energy, meaning that 
they can broaden turbulence levels up to 22%. In the vicinity of the impeller the energetic 
content of the P-MIs is smaller, whereas CIs contribute strongly to the fluid motion with 
average energetic contents of about 21% of the turbulent energy for the transitional 
regime. Results are summarised in Table 2. 
 

Rushton turbine 

Flow instability CIs P-MIs 

How they manifest change in circulation 
large temporal and spatial 

fluctuation superimposed on 
the mean flow pattern 

Impeller/vessel configuration
specific configuration 

(C/T = 0.17-0.2 with D/T = 
0.33) 

several configurations 
(different impeller types D/T, 

C/T) 

Temporal appearance intermittently present continuously present 

Non-dimensional frequency f’ = 0.13 f’ = 0.015 

Possible origin 
interaction between impeller 
discharged stream and vessel 

base/walls 

precessional motion of a 
vortex about the shaft 

Table 1. Characteristics of CIs and MIs investigated with the Rushton turbine. Galletti 
(2005). 

 
 Near the surface Impeller region 

 EMI/ETUR ECI/ETUR EMI/ETUR ECI/ETUR 

double-loop up to 50% ~4% ~5% ~3% 

transitional state up to 25% up to 25% negligible ~ 21% 

single-loop ~ 12 % ~ 3% negligible negligible 

Table 2. Relative energy of MIs and CIs with respect to the turbulent energy for the double-, 
single- and transitional patterns. Galletti (2005). 
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A similar analysis was carried out for a PBT: in this case the  P-MIs and J-MIs were studied 
(see Table 3). The authors found the presence of both instabilities, indicating that the 
occurrence and magnitude, i.e. energetic content, of MIs and JIs vary substantially from one 
region of a vessel to another. P-MIs affect strongly the region of the vessel near the surface 
and around the shaft, whereas the bulk of the vessel is dominated more by J-MIs generated 
from the interaction of the impeller discharged stream and the vessel boundaries. J-MIs are 
also stronger upstream of the baffles and near the walls, which may confirm their origin. 
Table 4 reports the energetic contribution of the different macro-instabilities at different 
axial location in the vessel.  
 

 Pitched Blade Turbine  
Flow instability J-MIs P-MIs 

How they manifest 
large temporal and spatial 

fluctuation superimposed on 
the mean flow pattern 

large temporal and spatial 
fluctuation superimposed on 

the mean flow pattern 

Impeller/vessel configuration specific configuration 
(C/T = 0.25 with D/T = 0.5) 

several configurations 
(different impeller types D/T, 

C/T) 

Temporal appearance continuously present continuously present 
Non-dimensional frequency f’ = 0.186 f’ = 0.015 

Possible origin 
interaction between impeller 
discharged stream and vessel 

base/walls 

precessional motion of a 
vortex about the shaft 

Table 3. Characteristics of JIs and MIs investigated with the pitched blade turbine. Galletti 
(2005). 

 
 P-MIs J-MIs 

Location of the 
horizontal plane 

Max 
EMI/ETUR 

Average 
EMI/ETUR

Max 
EJI/ETUR 

Average 
EJI/ETUR 

z/T = 0.05 1.9% 5.7% 2.7% 6.3% 
z/T = 0.6 6.2% 12% 10.1% 20% 

z/T = 0.93 14.6% 39.8% 1.7% 7% 

Table 4. Average and maximum relative energy of MIs and JIs with respect to the turbulent 
energy, for different horizontal planes. Galletti (2005). 

For the eccentric agitation in an unbaffled vessel, Galletti & Brunazzi (2008) showed that the 
flow instability related to the movement of the two vortices described in section 4.2.2. was 
very strong, as its energetic contribution was evaluated to be as high as 52% of the turbulent 
kinetic energy. Also the shedding vortices from flow-shaft interaction considerably affected 
the turbulence levels (energetic contribution of 82%), hence they should be considered in 
evaluating the micro-mixing scales.  
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1. Introduction 
Hydrodynamic properties of fractal aggregates and polymer coils, such as sedimentation 
velocity, permeability, translational and rotational diffusion coefficients and intrinsic 
viscosity, are of great interest in hydrodynamics, engineering, colloid and polymer science 
and biophysics. The hydrodynamic properties of aggregates are closely connected to their 
structure.  
Aggregates – the clusters of monomers -  usually have a fractal structure which means that 
parts of the object are similar to the whole. The self-similar structure is characterized by the 
fractal dimension which is a measure of how the aggregate fills the space it occupies. The 
fractal dimension can be calculated by analyzing the mass-radius relation for a series of 
similar aggregates, since the mass of an aggregate scales as a power of the size. 
The fractal dimension can be also determined by covering the aggregate with spheres of 
changing radius (Fig. 1). Then plotting the number of spheres  N   versus their radius   
in a log-log coordinate system, one determines the fractal dimension as the negative slope of 
the obtained line.  
 

 
Fig. 1. Aggregate covering with spheres of changing radius. 
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The Hausdorff dimension (Hausdorff, 1919) is the critical exponent for which the Hausdorff  
measure dM , being proportional to the product of number of spheres and a power of their 
radius, changes from zero to infinity when the size of covering elements tends to zero 
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In practice each monomer has its size. It is thus generally accepted the constancy of 
Hausdorff measure in a finite range of size to be sufficient to characterize the aggregate 
structure. The constancy of the Hausdorff measure for two limiting sizes of spheres, written 
for an aggregate containing i monomers, can be expressed as  

 11 D DR i R    (2) 

where R is the radius of the sphere circumscribed on the aggregate and 1R is the radius of 
envelope surrounding one monomer, for which the similarity to the aggregate still exists 
(Gmachowski, 2002). 
The structure of aggregates is permeable which means that a fluid flows not only around 
but also through the aggregate. It  is analyzed by taking into account the internal 
permeability of aggregates, either directly or by replacing a given aggregate by a smaller 
impermeable sphere of the same hydrodynamic properties. In this way the hydrodynamic 
radius is defined. 
The structure of fractal aggregate can be related to the possibility to penetrate its interior by 
a fluid, well represented by internal permeability. The translational friction coefficient of a 
particle of radius R can be written in the following form 

 06T
r

f R
R

   (3) 

where the hydrodynamic radius r is introduced to take into account its dependence on the 
internal permeability of the aggregate. Such relation gave Brinkman  for translational 
friction factor (Brinkman, 1947) 
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where /R k   is the reciprocal square root of dimensionless internal permeability of a 
sphere of uniform structure modeling the fractal aggregate. The analogous relations of the 
normalized hydrodynamic radius for the rotational friction coefficient and the intrinsic 
viscosity are slightly different, but all the three give the results which are very close to one 
another (Gmachowski, 2003).  
For a homogeneous porous medium, being an arrangement of monosized particles, the 
permeability is proportional to the square of the characteristic pore size (Dullien, 1979) 
which is closely correlated to the size of constituents. In the case of fractal aggregate, which 
is not homogeneous, the fluid flow occurs mainly in the large pores. Hence their size 
determines the aggregate permeability.  
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For similar aggregates the size of large pores scales as the size of the whole aggregate. 
Therefore the ratio of the internal permeability and the square of aggregate radius is 
expected to be constant for aggregates of the same fractal dimension and to decrease with 
increasing fractal dimension due to the increment of the aggregate compactness 
(Gmachowski, 1999; Woodfield & Bickert, 2001; Bushell et al., 2002). This means that 

/R k  is a unique function of the fractal dimension of an aggregate and hence the ratio 
r/R is determined by D (Eq. 4). A formula 
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r D
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has been derived from analysis of permeability of aggregated system (Gmachowski, 2000) 
and is confirmed by different hydrodynamic properties of fractal aggregates (Gmachowski, 
2003).  
This means that the hydrodynamic radius is proportional to aggregate radius for a given 
fractal dimension. The covering can be thus performed not only in the range of radii, but 
also in the range of hydrodynamic radii. The hydrodynamic radius of a solid monomer is its 
geometrical radius.  For fractal aggregate the mass-hydrodynamic radius relation has the 
following form 
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since the hydrodynamic radius r converges to the primary particle radius a for the number 
of constituent particles equal to unity (Gmachowski, 2008). The mass-radius relation reads 
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which reduces to the previous one if the aggregation number is related to the hydrodynamic 
radius instead to the radius. The full form of mass-radius relation has the form 
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Plotting in a log-log system the aggregation number against radius for several similar 
aggregates, one can determine a best fit straight line whose slope is the fractal dimension 
and the location makes it possible to determine the monomer radius. 
If the aggregate is composed of smaller aggregates instead of solid monomers, their number 
is correlated to the hydrodynamic radius of smaller aggregates according to the mass-radius 
relation of the form similar to Eq. (8).  

2. Aggregates with complex structure 
An aggregate has a complex structure if it consists of smaller aggregates instead of solid 
monomers (Fig. 2) and their fractal dimension is different from that of the whole aggregate. 



 
Hydrodynamics – Advanced Topics 

 

254 

In opposite, the constancy of Hausdorff measure would take place in the range of the whole 
aggregate hydrodynamic size down to the solid monomer size. An aggregate with complex 
structure is termed as aggregate with mixed statistics, since it has different fractal 
dimensions on different length scales. The constituent aggregates are known as blobs.  
The knowledge of the hydrodynamic radius in relation to the radius of fractal aggregate of a 
given fractal dimension, utilized for blobs, makes it possible to replace the blobs by their 
hydrodynamic equivalents. In this way an aggregate with mixed statistics is reduced to 
fractal aggregate with the Hausdorff measure constant in the range of the whole aggregate 
hydrodynamic size down to the hydrodynamic size of blobs.  
 

r

rB

DB

D

a

 
Fig. 2. Graphical representation of an aggregate with mixed statistics. The aggregate fractal 
dimension is a result of the spatial arrangement of blobs. 

An aggregate with mixed statistics of hydrodynamic radius r  and fractal dimension D  
consists of I  blobs of hydrodynamic radius Br  and fractal dimension BD , each containing 

Bi solid monomers of radius a. The mass-hydrodynamic radius relations are 
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Let us imagine an aggregate of the same mass and fractal dimension composed of 
monomers instead of blobs. Then the total number of monomers can be expressed as 
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Combining the last three equations, one gets the expression for the change of hydrodynamic 
radius caused by the presence of blobs 

 1/ 1/

0

BD D
B

r
i

r
  (12) 

The corresponding mass-radius relation for an aggregate with mixed statistics reads 
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which makes it possible  to determine the blob hydrodynamic radius by plotting in a log-log 
system the number of blobs against the aggregate radius for several similar aggregates with 
mixed statistics and then deducing the slope and location of the best fit straight line obtained. 

3. Asphaltene aggregates 
The aggregate of mixed statistics can be obtained by shearing the crude oil (Gmachowski & 
Paczuski, 2011). Asphaltenes, a part of petroleum, are aromatic multicyclic molecules 
surrounded and linked by aliphatic chains and heteroatoms, of the molar mass in the range 
500-50000 u. As a result of shearing, they aggregate to form blobs of a size of several 
micrometers, which join to form aggregates with mixed statistics. If the crude oil is mixed with 
toluene and n-heptane in different proportions, the range of aggregate size becomes wider. 
 

 

 
Fig. 3. Typical microscope image of asphaltene aggregate. 

It is possible to estimate the size and number of blobs for several images (Fig. 3) to identify 
the form of mass-radius relation of asphaltene aggregates by plotting the data in a log-log 
system. This is presented in Fig. 4.  
The fractal dimension determined by this method for aggregates of mixed statistics 
investigated was D=1.5, whereas the hydrodynamic radius of blobs 3Br m . Two 
additional line are drawn in Fig. 4, representing Eq. (13) for the same fractal dimension and 
two values of the blob hydrodynamic radius, namely 2Br m and 4Br m . Their 
locations do not correspond to points representing the experimental data, which confirms 
the rationality of the method of mass-radius relation for aggregates with mixed statistics. 
Moreover, the size estimated (blob hydrodynamic radius 3Br m ) is close to that observed 
in the image (blob radius), which suggests very compact structure of blobs formed by 
asphaltenes.  

4. Free settling velocity 
Free settling velocity of an aggregate with mixed statistics can be determined by equating 
the gravitational force allowing for the buoyancy of the surrounding fluid with the opposing 
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hydrodynamic force which depends on the aggregate size and its permeability.  The use of 
hydrodynamic radius which is the radius of an impermeable sphere of the same mass 
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Fig. 4. Graphical representation of the mass-radius relation for asphaltene aggregates.  

having the same dynamic properties, instead of the aggregate radius, makes it possible to 
neglect the internal permeability. For an aggregate of hydrodynamic radius r composed of 

Bi Ii  primary particles of radius a the force balance is 

  3
0

4 6
3 B s fa Ii g ru      (14) 

Using the mass-hydrodynamic radius relations for blob and aggregate (Eqs. 9,10), one gets 
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where 
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is the Stokes falling velocity of primary particle.   
Alternatively, using the expression for the hydrodynamic radius changed by the presence of 
blobs (Eq. 12), one obtains 
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If the blobs of the fractal dimension different from that of the aggregate are not present 
( BD D and 0r r ), the corresponding dependences reduce to the following relations 
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characteristic for fractal aggregates with one-level structure. Hence the following formulae  
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describe the free settling velocity of aggregates with mixed statistics. 

5. Intrinsic viscosity of macromolecular coils and the thermal blob mass 

A macromolecular coil in a solution is modeled as an aggregate with mixed statistics 
consisting of I  thermal blobs of 2BD  , each containing Bi solid monomers of radius a and 
mass aM . To calculate the intrinsic viscosity 

   0
0 0

lim
c c

 



  (22) 

one has to define the mass concentration c of a macromolecular solution analyzed. The mass 
concentration in the coil, represented by the equivalent impermeable sphere, can be 
calculated as the product of the total number of non-porous monomers BIi  multiplied by 
their mass 34 / 3 sa  and divided by the hydrodynamic volume of the coil 34 / 3 r . This 
concentration multiplied by the volume fraction of equivalent aggregates   gives the 
overall polymer mass concentration in the solution.  
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Mass-radius relations are then employed. The thermal blob mass related to that of 
nonporous monomer is the aggregation number of the thermal blob 
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whereas the macromolecular mass related to that of thermal blob is the aggregation number 
of aggregate equivalent to coil 
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Taking into account that the volume fraction of polymer in an aggregate equivalent to 
polymer coil can be rearranged as follows 
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finally one gets 
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or 
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if the fractal dimension D is replaced by the Mark-Houwink-Sakurada exponent MHSa , 
characterizing the thermodynamic quality of the solvent, where 

 3 / 1MHSa D   (29) 

The structure of a dissolved macromolecule depends on the interaction with solvent and 
other macromolecules. The resultant interaction determines whether the monomers 
effectively attract or repel one another. Chains in a solvent at low temperatures are in 
collapsed conformation due to dominance of attractive interactions between monomers 
(poor solvent). At high temperatures, chains swell due to dominance of repulsive 
interactions (good solvent). At a special intermediate temperature (the theta temperature) 
chains are in ideal conformations because the attractive and repulsive interactions are equal. 
The exponent MHSa  changes from 1/2 for theta solvents to 4/5 for good solvents, which 
corresponds to the fractal dimension range of from 2 to 5/3.   
The viscosity of a dispersion containing impermeable spheres present at volume fraction 
 can be described by the Einstein equation (Einstein, 1956) 
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from which 
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The intrinsic viscosity can be thus calculated as 
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Utilizing the expression for the mass concentration, one gets 
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The obtained equation can be also derived in terms of complex structure aggregate 
parameters for any blob fractal dimension to get 
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which is equivalent to 
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Equation derived for polymer coil can be compared to the empirical  Mark-Houwink-
Sakurada expression relating the intrinsic viscosity to the polymer molecular mass 

   MHSaK M   (36) 

For the theta condition the formulae (Eq. 33) read 
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and 

   1/2K M   (38) 

The Mark-Houwink-Sakurada expressions are presented in Fig. 5. 
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Fig. 5. Graphical representation of the Mark-Houwink-Sakurada expressions. 
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There is a lower limit of the Mark-Houwink-Sakurada expression applicability. Intrinsic 
viscosity of a given polymer in a solvent crosses over to the theta result at a molecular mass 
which is the thermal blob molecular mass. This means that 

 1/2MHSa
B BK M K M   (39) 

from which 

 
 1/ 1/2MHSa
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The thermal blob mass depends on the Mark-Houwink-Sakurada constant at the theta 
temperature, characteristic for a given polymer-solvent system, as well as the constant and 
the Mark-Houwink-Sakurada exponent valid at a given temperature. The form of this 
dependence is strongly influenced by the mass of non-porous monomer aM  of thermal 
blobs, which is different for different polymers. The thermal blob mass normalized by the 
mass of non-porous monomer  /B aM M , however, is the number of non-porous monomers 
in one thermal blob and therefore it expected to be a unique function of the solvent quality. 
This function, determined (Gmachowski, 2009a) from many experimental data measured for 
different polymer-solvent systems, reads 

     / 0.51/3exp 0.9 2 1
MHS MHSa a

B
B MHS

a

M
i a

M


      

 (41) 

The thermal blob aggregation number can be also calculated from the theoretical model of 
internal aggregation based o the cluster-cluster aggregation act equation (Gmachowski, 
2009b) 

    1/ 1/~ i i

D DD Dr
i i D i i

R
    

 (42) 

being an extension of the mass-radius relation for single aggregate 

  
D D Dr r R

i D
a R a

               
 (43) 

assuming it is a result of joining to two identical sub-clusters and its radius R is proportional 
to the sum of hydrodynamic radii  1/ 1/i iD Da i i  , where the normalized hydrodynamic 

radius is described by Eq. (5). Aggregation act equation can be specified to the form of an 
equality 

      1/ 1/1
lim2 / i i
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R R
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for which D tends to limD  if Bi  tends to infinity.  
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Let us imagine a coil consisting of one thermal blob. This is in fact a thermal blob of the 
structure of a large coil. Such rearranged blobs can join to another one to produce an object 
of double mass. The model makes it possible to calculate the fractal dimension D of the coil 
after each act of aggregation of two smaller identical coils of fractal dimension iD  changing 
with the aggregation progress.   
Using the model for lim 2D   (the fractal dimension of thermal blobs), the dependences 
 Bi D  have been calculated using CCA simulation, starting from both good and poor 

solvent regions. The aggregates growing by consecutive CCA events restructured to get a 
limiting fractal dimension limD  in an advanced stage of the process. Starting from 8Bi   
and 5 / 3iD  , the result is D=1.8115. The second input to the model equation is thus 

16Bi   and 1.8115iD  .  Finally, the calculation results are presented in Fig. 6, where they 
are compared to the dependence deduced from the empirical data. 
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Fig. 6. Comparison of the model fractal dimension dependence of the thermal blob 
aggregation number (solid lines) to the representation of the experimental data measured 
for different polymer-solvent systems (Eq. 41), depicted as dashed lines. 

6. Hydrodynamic structure of fractal aggregates 
As discussed earlier, the ratio of the internal permeability and the square of aggregate 
radius is expected to be constant for aggregates of the same fractal dimension. Consider an 
early stage of aggregate growth in which the constancy of the normalized permeability is 
attained. At the beginning the aggregate consists of two and then several monomers. The 
number of pores and their size are of the order of aggregation number and monomer size, 
respectively. At a certain aggregation number, however, the size of new pores formed starts 
to be much larger than that formerly created. This means that the hydrodynamic structure 
building has been finished and the smaller pores become not active in the flow and can be 
regarded as connected to the interior of hydrodynamic blobs.  
A part of the aggregate interior is effectively excluded from the fluid flow, so one can 
consider this part as the place of existence of impermeable objects greater than the 
monomers. Since both the impermeable object size and the pore size are greater than 
formerly, the real permeability is bigger than that calculated by a formula valid for a 
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uniform packing of monomers. So this point can be considered as manifested by the 
beginning of the decrease of the normalized aggregate permeability calculated.   
During the aggregate growth the number of large pores tends to a value which remains 
unchanged during the further aggregation. The self-similar structure exists, which can be 
described by an arrangement of pores and effective impermeable monomers (hydrodynamic 
blobs) of the size growing proportional to the pore size. 
According to the above considerations one can expect effective aggregate structure such that 
the normalized aggregate permeability 2/k R  attains maximum. To determine the 
hydrodynamic structure of fractal aggregate the aggregate permeability is estimated by the 
Happel formula  
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where the volume fraction of solid particles in an aggregate is described as 
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The normalized aggregate permeability is calculated as 
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The results are presented in Fig. 7. 
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Fig. 7. Normalized aggregate permeability calculated by the Happel formula for different 
fractal dimensions. The maxima (indicated) determine the number of hydrodynamic blobs 
in aggregate. 
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Fig. 8. Number of hydrodynamic blobs as dependent on fractal dimension.      

Due to self-similarity, the number of monomers deduced from Fig. 8 is the number of 
hydrodynamic blobs which are the fractal aggregates similar to the whole aggregate. 
Hydrodynamic picture of a growing aggregate is such that after receiving a given number of 
monomers the number of hydrodynamic blobs becomes constant and further growth causes 
the increase in blob mass not their number.   
As this estimation shows, the number of hydrodynamic blobs rises with the aggregate 
fractal dimension. The knowledge of this number makes it possible to estimate the 
aggregate permeability in the slip regime where the free molecular way of the molecules of 
the dispersing medium becomes longer than the aggregate size. In this region the dynamics 
of the continuum media is no longer valid.  
The permeability of a homogeneous arrangement of solid particles of radius a, present at 
volume fraction  , can be calculated (Brinkman, 1947) as 

 0
2

62
9 packing

ak
fa



   (48) 

The friction factor of a particle in a packing can be presented as the friction factor of 
individual particle multiplied by a function of volume fraction of particles 

  packingf f S    (49) 

In the continuum regime  

 06continuumf f a   (50) 

whereas in the slip one (Sorensen & Wang, 2000) 

 06 / 1 1.612slipf f a
a
     

 
 (51) 
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where  is the gas mean free path. 
For a given structure of arrangement  ,a   it possible to calculate the permeability 
coefficient in the slip regime from that valid in the continuum regime (Gmachowski, 2010) 

 1 1.612continuum
slip

slip

f
k k k

f a
     

 
 (52) 

in which the monomer size should be replaced by the hydrodynamic blob radius rising such 
as the growing aggregate. So large differences in permeabilities at the beginning diminish 
when the aggregate mass increases and disappear when  the aggregate size greatly exceeds 
the gas mean free path.  
Calculated mobility radius mr , representing impermeable aggregate in the slip regime, is 
smaller than the hydrodynamic one because of higher permeability and tends to the 
hydrodynamic size when the difference in permeabilities becomes negligible. At an early 
stage of the growth of aerosol aggregates it can be approximated as a power of mass (Cai & 
Sorensen, 1994) 

 1/2.3
mr a i   (53) 

in which the number 2.3 greatly differs from the fractal dimension equal to 1.8. 

7. Discussion 
Covering the aggregate with spheres of a given size, one defines the blobs which are the 
units in which the monomers present in aggregates are grouped. Changing the size of the 
spheres we can increase or decrease the blob size. If the blobs have the same structure as the 
whole aggregate, the aggregate is the self-similar object.  
Otherwise the object is a structure of mixed statistics with the hydrodynamic properties 
described in this chapter. There were analyzed aggregates containing monosized blobs of a 
given fractal dimension. The blobs of asphaltene aggregates are dense, probably of fractal 
dimension close to three. The thermal blobs - the constituents of polymer coils - have 
constant fractal dimension of two, independently of the thermodynamic quality of the 
solvent and hence the coil fractal dimension.   
The determination of the hydrodynamic radius of hydrodynamic blobs in fractal aggregates, 
despite the same fractal structure as for the whole aggregate, serves to estimate the size of 
large pores through the fluid can flow. It makes it possible to model the fluid flow through 
the aggregate in terms of both the continuum and slip regimes. 
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1. Introduction 
Micro-discharges are specific cold filamentary plasma that are generated at atmospheric 
pressure between electrodes stressed by high voltage. As cold plasma or non-thermal plasma, 
we suggest that the energy of electrons inside the conductive plasma is much higher than the 
energy of the heaviest particles (molecules and ions). In such kind of plasma, the temperature 
of the gas remains cold (i.e. more or less equal to the ambient temperature) unlike in the field 
of thermal plasmas where the gas temperature can reach some thousands of Kelvin. This high 
level of temperature can be measured for example in plasma torch or in lightning.  
The conductive channels of micro-discharges are very thin. Their diameters are estimated 
around some tens of micrometers. This specificity explains their name: micro-discharge. 
Another of their characteristic is their very fast development. In fact, micro-discharges 
propagate at velocity that can attain some tens of millimetres per nanosecond i.e. some 107 
cm.s-1. This very fast velocity is due to the propagation of space charge dominated streamer 
heads. The space charge inside the streamer head creates a very high electric field in which 
the electrons are accelerated like in an electron gun. These electrons interact with the gas 
and create mainly ions and radicals. In fact, the energy distribution of electrons inside 
streamer heads favours the chemical electron-molecule reactions rather than the elastic 
electron-molecule collisions. Therefore, micro-discharges are mainly used in order to 
activate chemical reactions either in the gas volume or on a surface (Penetrante & Schultheis, 
1993, Urashima &Chang, 2010, Foest et al. 2005, Clement, 2001). 
Several designs of plasma reactors are able to generate micro-discharges. The most 
convenient and the well known is probably the corona discharge reactor (Loeb, 1961&1965, 
Winands, 2006, Ono & Oda a, 2004, van Veldhuizen & Rutgers, 2002, Briels et al., 2006 ). 
Corona micro-discharges reactor has at least two asymmetric electrodes i.e. with one of 
them presenting a low curvature that introduces a pin effect where the geometric electric 
field is enhanced. The corona micro-discharges are initiated from this high geometric field 
area. Some samples of corona reactor geometries are shown in Fig. 1. 
The transient character and the small dimensions make some micro-discharges parameters, 
like charged and radical densities, electron energy or electric field strength, difficult to be 
accessible to measurements. Therefore, the complete simulation of the discharge reactor, in 
complement to experimental study can lead to a better understanding of the physico- 
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Fig. 1. Sample of pin-to-plane and wire-to-cylinder corona discharge reactors. The light blue 
material corresponds to a dielectric material. Depending on applications, design and reactor 
efficiency, the High Voltage (HV) shape can be DC, pulsed, AC or a combination of them. 

chemical activity triggered by the micro-discharge during the plasma process. All these 
information can be used in order to improve the reactor design and to achieve the best 
operating conditions (such as the reactor geometry, the flue gas resident time, the applied 
voltage shape and magnitude, among others) as a function of the chosen applications.  
The present chapter is devoted to description of the main electro-hydrodynamics 
phenomena that take place in non-thermal plasma reactors at atmospheric pressure 
activated by corona micro-discharges. The first section describes the micro-discharges 
characteristics using the experimental results obtained in a mono pin-to-plane reactor 
stressed by either DC or pulsed high voltage. The physics of the micro-discharges 
development is explained and a complete hydrodynamics model is proposed based on the 
moments of Boltzmann equations for charged and neutral particles. Then before to 
conclude, the previous described model is used in order to simulate the strongly coupled 
chemical and hydrodynamics phenomena generated by micro-discharges in a non thermal 
plasma reactor. 

2. Description of positive corona micro-discharges 
2.1 Introduction 
In this first section, we describe the main characteristics of the corona micro-discharge 
formation and development as a function of several operating parameters such as the 
geometry of electrodes or the shape and magnitude of applied high voltage. Then, based on 
Boltzmann kinetic theory, we describe the strongly coupled electrical, hydrodynamics and 
chemical phenomena that take place in a compressible gas crossed by micro-discharges. 

2.2 Positive corona micro-discharge under DC voltage condition 
Let consider a mono pin-to-plane electrode corona reactor filled with dry air at atmospheric 
pressure and ambient temperature (Dubois et al., 2007). A DC high voltage supply is 
connected to the pin through a mega ohm resistor. When the applied voltage is raised 
gradually there is no sustained discharge current as much as the electrical gap field remains 
less than the onset one. Then, a sudden current pulse appears marking the beginning of the 
self sustained onset streamer regime. The associated current pulses occur intermittently and 
randomly and the mean current is very low (of few µA). Using a CCD camera with a large 
time shutter, we can observe a low intensity spot light just around the pin (see Fig. 2a). If we 
continue to increase the DC voltage, the current pulses vanish. However, the spot light near 
the point is always observed but with a quite higher intensity (see Fig. 2b). This regime 
corresponds to the classical glow corona discharge which is characterised by a drift of 
charged particles in the inter-electrode gap. The average current can reach some tens of µA. 
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For a high voltage threshold value, some regular repetitive current pulses appear with a 
repetition frequency of some tens of kHz and a magnitude of some tens to hundred of mA. 
Each current pulse lasts some hundred of nanoseconds and corresponds to the propagation 
of a mono-filament corona micro-discharge shown in Fig. 2c.  
 

 
Fig. 2. Photography of the different corona discharge regimes under positive DC voltage 
condition (inter-electrode distance = 7mm, pin radius = 20 µm, dry air, atmospheric 
pressure). a: onset streamer, DC voltage magnitude = 3.2kV, time camera shutter = 1s, b: 
glow discharge, DC voltage magnitude = 5kV, time camera shutter = 10ms, c: streamer 
micro-discharge, DC voltage magnitude = 7.2kV, time camera shutter = 10µs (Eichwald et 
al., 2008). 

More detailed information on the spatio-temporal evolution of the micro-discharge can be 
obtained thanks to the analysis of the streak camera picture shown in Fig. 3 and the 
corresponding current pulse shown in Fig. 4 (Eichwald et al., 2008, Marode, 1975). In Fig. 3, 
the X-axis is the time axis while the Y-axis is the inter-electrode distance. The electrode 
location is shown in the drawing at the left side of Fig. 3. For a given time on the X-axis, the 
light emission of the micro-discharge filament at each position is focused along the 
corresponding Y-axis coordinate. When 8.2kV is applied to the pin, three main phases can 
be distinguished in the corona micro-discharge development. The first one corresponds to 
the primary streamer propagation from the anode pin towards the cathode plane. The 
primary streamer propagates a luminous spot (called streamer head) which leaves the first 
narrow luminous trail shown on the streak picture of Fig. 3. During this first phase, the 
current rapidly increases as shown in Fig. 4 between 50ns and 75ns. The second phase  
 

 
Fig. 3. Streak camera picture of a corona micro-discharge: Inter-electrode distance = 7mm, 
pin radius = 20 µm, dry air, atmospheric pressure, DC voltage magnitude = 8.2kV  
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Fig. 4. Instantaneous micro-discharge current (inter-electrode distance = 7mm, pin radius = 
20 µm, dry air, atmospheric pressure, DC voltage magnitude = 8.2kV) 

corresponds to the arrival of the primary streamer at the cathode. It is associated to both 
the sudden increase of the current pulse at around 75ns (see Fig. 4) and the first current 
peak. In the present experimental conditions, the current pulse magnitude reaches a 
maximum of 30mA. On the current curve of Fig. 4, we also observe that the primary 
streamer needs about 25ns to cross the inter electrode gap and to reach the cathode plane 
7mm underneath the pin. Thereby, the mean primary streamer velocity can be estimated 
of about 3×107cm s-1. We also observe in Fig. 3 the development of a secondary streamer 
(Sigmond, 1984) starting from the point when the primary streamer arrives at the cathode 
plane. The associated light emission is more diffuse on the streak picture because the 
radiative species are distributed along the pre-ionized channel. The development and 
propagation of the secondary streamer induce a second current peak (see Fig. 4). Finally, 
each current pulse is characterised by the propagation of primary and secondary 
streamers which in turn create the thin ionized channels of the micro-discharge shown in 
Fig. 2c.  

2.3 Positive corona micro-discharge under pulsed voltage condition 
The morphology of micro-discharges under pulse voltage condition is quite different from 
the case of DC voltage condition (van Veldhuizen & Rutgers, 2002, Abahazem et al. 2008). 
However, we will see at the end of the present section the correspondence between both 
regimes using a large voltage pulse width. Fig. 5 shows a sample of a high voltage pulse 
applied on the pin of a pin-to-plane corona reactor and the resulting measured current pulse. 
The pulse voltage width is first chosen in order to obtain only one micro-discharge per pulse. 
The experimental conditions are very similar to those used for the DC voltage study 
described in previous section 2.2. In Fig. 5, the two current peaks superposed with the 
increasing and decreasing fronts of the pulse voltage are two capacitive current pulses 
generated by the equivalent capacitance of the pin-to-plane electrode configuration. The 
micro-discharge current pulse is positioned at time t=0ns in Fig. 5. A detailed description of 
this peculiar current pulse can be seen in Fig. 6. A rapid comparison with the DC current 
pulse in Fig. 4 indicates that the current pulse magnitude under pulse voltage condition is 
much higher (~175mA) than in the DC voltage case (~30mA). In fact, the ICCD time  
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Fig. 5. Instantaneous measured current for pulsed voltage conditions: Maximum voltage 
magnitude=8kV, pulse voltage width=40µs, inter-electrode distance=8mm, pin 
radius=25µm, dry air at atmospheric pressure. 
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Fig. 6. Instantaneous corona current for pulsed voltage conditions: Maximum voltage 
magnitude=8kV, pulse voltage width=40µs, inter-electrode distance=8mm, pin 
radius=25µm, dry air at atmospheric pressure. 

integrated picture of Fig. 7 clearly shows that there are several streamers starting from the 
pin towards the plane. This branching mechanism occurs in pulsed voltage conditions and 
therefore gives a higher discharge current than in the case of DC voltage. 
The evolution of the corona current in Fig. 6 is characterized by a first peak of about 70mA 
with a short duration (around 4ns) corresponding to the discharge ignition due to the  
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Fig. 7. Time integrated picture of corona discharge in dry air at atmospheric pressure for a 
time exposure of 10ms: Maximum voltage magnitude=8kV, pulse voltage width=40µs, inter-
electrode distance=8mm and pin radius=25µm. 

intense ionization processes generated by the high geometric electric field near the pin. This 
phenomenon can be seen in the first picture of Fig. 8 which shows an intensive spot light 
around the pin. After this first current peak, as soon as the electron avalanches reach a 
critical size, the accumulated charge space splits into several streamer heads that begin to 
propagate towards the cathode (see Fig. 8). During this primary streamer propagation, the 
corona current begins to steeply increase up to reach a peak value of about 175mA at the 
streamers arrival at the cathode for a time around 50ns (see Fig. 6). The streamer branches 
arrive separately at the cathode with an average propagation velocity of about 2.7× 107 cm.s-1. 
Above this instant, the corona current peak, after a first decrease due to transition between 
displacement and conduction currents, slows down during a short duration (around 70ns) 
corresponding to the secondary streamer propagation. This is then followed by a slower and 
monotonic fall of the corona current corresponding to the relaxation time that lasts above 
the 300ns displayed in the time axis of Fig. 6.  
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Fig. 8. Time resolved corona discharge pictures at different instants for dry air at 
atmospheric pressure: Maximum voltage magnitude=8kV, pulse voltage width=40µs, inter-
electrode distance=8mm and pin radius=25µm, exposure time = 3ns, reference intensity 
image=21ns  



 
Electro-Hydrodynamics of Micro-Discharges in Gases at Atmospheric Pressure 

 

275 

To summarize, the voltage pulsed corona micro-discharges are characterized by a streamer 
branching structure and the propagation of multiple primary and secondary streamers.  
Relations between pulsed and DC voltage conditions can be pointed out using a large width 
voltage pulse. In this case, several micro-discharges are able to cross the inter-electrode gap 
during a single voltage pulse. Fig. 9 shows the morphology of the first the 18 corona micro-
discharges generated between a pin and a plane using a high voltage pulse of 20ms of 
duration.  
 

 
Fig. 9. Streak pictures of the successive corona micro-discharges induced in dry air by a 
pulse voltage of 20 ms duration and 7.2 kV magnitude (Abahazem et al. 2008). 

The branching phenomenon is clearly observed in the first corona micro-discharge with the 
simultaneous development of a high number of filaments (see the first corona micro-
discharge in Fig. 9). Then, during about 400µs, the following discharges present a trunk 
expansion (shown by the red line in Fig. 9) in front of which a low number of filaments 
develop. A complete mono-filament structure appears after tens of discharges. Their 
characteristics are the same as those observed under DC high voltage condition. Thus, the 
more luminous trails in the discharge pictures of Fig. 9 correspond in fact to the 
development of the secondary streamers which extend gradually from the point towards the 
plane. Therefore, the formation of the mono-filament structure can be explained as a result 
of complex thermal and kinetics memory effects induced in the secondary streamer between 
each successive discharge. 

2.4 Induced neutral gas perturbations 
Even if micro-discharges are non thermal plasmas, their propagation can affect the neutral 
background gas (Eichwald et al. 1997, Ono & Oda b, 2004, Batina et al, 2002). In all cases, the 
micro-discharges modify the chemical composition of the medium (Kossyi et al. 1992, 
Eichwald et al. 2002, Dorai & Kushner 2003). In fact, the streamer heads propagate high 
energetic electrons that create radicals, dissociated, excited and ionized species by collision 
with the main molecule of the gas. Indeed, we have to keep in mind the low proportion of 
electrons and more generally of charged particles present in non-thermal plasma. At 
atmospheric pressure, and in the case of corona micro-discharge, we have about one million 
of neutral particles surrounding every charged species. Therefore, the collisions charged-
neutral particles are predominant. During the discharge phase (which is associated to the 
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current pulse), the radical and excited species are created inside the micro-discharge 
volume. But during the post-discharge phase (i.e. between two successive current pulses) 
these active species react with the other molecules and atoms and diffuse in the whole 
reactor volume. If a gas flow exists, they are also transported by the convective phenomena. 
However, convective transport can also be induced by the micro-discharges themselves. 
Indeed, the momentum transfers between heavy charged particles and background gas are 
able to induce the so called “electric wind”. The random elastic collisions between charged 
and neutral particles directly increase the gas thermal energy. Furthermore, the inelastic 
processes modify the internal energy of some molecules thus leading to rotational, 
vibrational and electronic excitations, ionisation and also dissociation of molecular gases. 
After a certain time, the major part of these internal energy components relaxes into random 
thermal energy. However, during the lifetime of micro-discharges (some hundred of 
nanoseconds), only a fraction of this energy, which in fact corresponds mainly to the 
rotational energy and electronic energy of the radiative excited states, relaxes into thermal 
form. The other fraction of that energy, which is essentially energy of vibrational excitation, 
relaxes more slowly (after 10-5s up to 10-4s). The thermal shock during the discharge phase 
can induce pressure waves and a diminution of the gas density and the vibrational energy 
relaxation can increase the mean gas temperature (Eichwald et al. 1997). All these complex 
phenomena induce memory effects between each successive micro-discharge. In fact, the 
modification of the chemical composition of the gas can favour stepwise ionisation with the 
pre-excited molecule (like metastable and vibrational excited species), the gas density 
modification influences all the discharge parameters which are function of the reduced 
electric field E/N (E being the total electric field and N the background gas density) and the 
three body reaction that are also function of the gas density. Furthermore, the local 
temperature increase also modifies the gas reactivity because the efficiency of some 
reactions depends on the gas temperature following Arrhenius law. Therefore, the complete 
simulation of micro-discharges has to take into account all these complex phenomena of 
discharge and gas dynamics.  

2.5 The complete micro-discharge model in the hydrodynamics approximation 
The complete simulation of the discharge reactor, in complement to experimental studies 
can lead to a better understanding of the physico-chemical activity triggered during micro-
discharge development and relaxation. Nowadays, in order to take into account the complex 
energetic, hydrodynamics and chemical phenomena that can influence the corona plasma 
process, the full simulation of the non thermal plasma reactor can be undertaken by 
coupling the following models: 
- The external electric circuit model,  
- the electro-hydrodynamics model, 
- the background gas hydrodynamics model including the vibrational excited state 

evolution, 
- the chemical kinetics model,  
- and the basic data model which gives the input data for the whole previous models.  
Each model gives specific information to the others. For example, the electro-
hydrodynamics model gives the morphology of the micro-discharge, the electron density 
and energy as well as the energy dissipated in the ionized channel by the main charged-
neutral elastic and inelastic collision processes. This information is coupled with the external 
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electric circuit model to calculate the micro-discharge impedance needed to follow the inter-
electrode voltage evolution. On the other hand, the calculated dissipated energy and 
momentum transfer are included as source terms in the background gas model in order to 
simulate the induced hydrodynamics phenomena like electric wind, pressure wave 
propagation, neutral gas temperature increase, etc. The neutral gas hydrodynamics 
influences both the discharge dynamics and the chemical kinetics results. For example, the 
charged transport coefficients depend on the neutral gas density and some main chemical 
reactions involving neutral species (like the three body reactions) are very dependant on 
both the gas temperature and density. Finally, the basic data models (Yousfi & 
Benabdessadok, 1996, Bekstein et al. 2008, Yousfi et al. 1998, Nelson et al. 2003) give the 
necessary parameters (such as the convective and diffusive charged and neutral transport 
coefficients, the charged-neutral and neutral-neutral chemical reaction coefficients, the 
fraction of the energy transferred to the gas from the elastic and inelastic processes, among 
others) needed to close the total equation systems.  
The electro-hydrodynamics model is an approximation of a more rigorous model. The 
kinetic description based on Boltzmann equations for the charged particles is probably the 
more rigorous theoretical approach. However the main drawback of the kinetics approach is 
linked to the treatment of the high number of electrons coming from ionization processes 
which involves huge computation times especially at atmospheric pressure. Therefore, the 
classical mathematical model used for solving the micro-discharge dynamics is the 
macroscopic fluid one also called the hydrodynamics electric model. Up to now, the most 
commonly used fluid model is the hydrodynamics first order model which involves the first 
two moments of Boltzmann equation (i.e the density and the momentum transfer 
conservation equation)  for each charged specie coupled with Poisson equation for the space 
charged electric field calculation (Eichwald et al. 1996). In all cases, the momentum equation 
can be simplified into the classical drift-diffusion approximation. The obtained system of 
hydrodynamics equations is then closed by the local electric field approximation which 
assumes that the transport and reaction coefficients of charged particles depend only on the 
local reduced electric field E/N. The hydrodynamics approximation is valid as long as the 
relaxation time for achieving a steady state electron energy distribution function is short 
compared to the characteristic time of the discharge development. At atmospheric pressure 
and because of the high number of collisions, the momentum and energy equilibrium times 
are generally small compared to any macroscopic scale variations of the system. In the 
hydrodynamics approximation, the coupled set of equations that govern the micro-
discharge evolution is the following:  
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These first four equations allow to simulate the behaviour of each charge particle “c” in the 
micro-discharge (like for example e, N2+, O2+, O4+, O-, O2-, among others). cn , cv

 , cS , 

cµ , cD


, cq are respectively the density, the velocity, the source term, the mobility, the 
diffusive tensor and the charge of each charge specie “c” involved in the micro-discharge. 
V and E


 are the potential and the total electric field. The source terms cS  represent for each 

charge specie the chemical processes (like ionization, recombination, attachment, 
dissociative attachment, among others)  as well as the secondary emission processes (like 
photo-ionisation and photo-emission from the walls (Kulikovsky, 2000, Hallac et al. 2003, 
Segur et al. 2006)). The transport equations of charged particles are not only strongly 
coupled through the plasma reactivity but also through the potential and electric field 
equations. Indeed, in equation (3) the potential and therefore the electric field in equation (4) 
are directly dependant on the variation of the density of the charged species, obtained from 
solution of equations (1)-(2) requiring the knowledge of transport and reaction coefficients 
that in turn have a direct dependence on the local reduced electric field E/N. Therefore the 
simulation of micro-discharge dynamics needs fast and accurate numerical solver to 
calculate the electric field at each time step (especially in regions with high field gradients 
like near the streamer head and the electrode pin) and also to propagate high density shock 
wave.  
Even if the solution of the first order hydrodynamics model allows a better understanding 
of the complex phenomena that govern the dynamics of charged particles in micro-
discharges, the experimental investigations clearly show that the micro-discharges have an 
influence on the gas dynamics that can in turn modify the micro-discharge characteristics. It 
is therefore necessary to couple the electro-hydrodynamics model with the classical Navier-
Stockes equations of a compressible and reactive background neutral gas coupled with the 
conservation equation of excited vibrational energy (Byron et al. 1960, Eichwald et al. 1997). 
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The set of equations (5) to (9) are used to simulate the neutral gas behavior and to follow 
each neutral chemical species “i” (like N, O, O3, NO2, NO, N2 (A3∑u+), N2 (a’1∑u-), O2 (a1∆g), 
among others) that are created during the micro-discharge phase. In equations (5) to (9), ρ is 
the mass density of the background neutral gas, v

  the gas velocity, P the static pressure and 
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τ


 the stress tensor. For each chemical species “i”, mi is the mass fraction, iJ


 the diffusive 
flux due to concentration and thermal gradients, Si the net rate of production per unit 
volume (due to chemical reactions between neutral species)  and icS simulates the creation 
of new neutral active species during the discharge phase by electron or ion impacts with the 
main molecules of the gas. h is the static enthalpy, T the temperature, k the thermal 
conductivity and vε  the vibrational energy. hS  and vS  are the fraction of the total electron 

power .j E
 

 transferred during the discharge phase into thermal and vibrational energy. It is 
generally assumed that the translational, rotational and electronic excitation energies relax 
quasi immediately into thermal form and that the vibrational energy stored during the 
discharge phases relaxes after a mean delay time vτ of some tens of micro-seconds. qmS


is the 

total momentum transferred from charged particles to the neutral ones. As already 

explained, all the discharge parameters ( cS , cµ , cD


, icS , qmS


, hS  and vS ) are strongly 

dependent on the reduced electric field (E/N). Therefore the coupling of all the set of 
equations (1) to (9) for each charged and neutral chemical species will considerably enhance 
the complexity of the global hydrodynamics model. In fact, each gas density variation can 
directly affect the development of micro-discharges through the reduced electric field 
variation. 
Finally, the modelling of complex phenomena occurring inside non-thermal reactor filled 
with complex gas mixtures needs the knowledge of the electron, the ion and the neutral 
transport and reaction coefficients. The charged and neutral particles kinetics model is 
therefore one of the method in complement to the experimental one that can be used to 
calculate or complete the set of basic data. Concerning the charged particles, the more 
appropriate method to obtain the unknown swarm data is to use a microscopic approach 
(e.g. a Boltzmann’s equation solution for the electron data and a Monte Carlo simulation for 
the ion data) based on collision cross sections (Yousfi & Benabdessadok, 1996, Bekstein et al. 
2008, Yousfi et al. 1998, Nelson et al. 2003). On the other hand the most commonly used 
method to calculate the neutral swarm data in a gas mixture is the use of the classical kinetic 
theory of neutral gas mixture (Hirschfielder et al. 1954). The macroscopic charged particles 
swarm data are given over a large range of either the reduced electric field or the mean 
electron energy. The whole set of data includes:  
- The macroscopic transport coefficients like mobility, longitudinal and transversal 

diffusion coefficients,  
- the reaction coefficients like ionization, attachment, dissociation, radiative or metastable 

electronic excitation coefficients, 
- the mean electron energy exchange frequencies of the elastic, inelastic and super-elastic 

processes, 
- and the mean electron momentum exchange frequency (if the classical drift diffusion 

approximation is not assumed valid) 
The calculation of the scalar (e.g. ionization or attachment frequencies), vectorial (drift 
velocity), and tensorial (diffusion coefficients) hydrodynamics electron and ion swarm 
parameters in a gas mixture, needs the knowledge of the elastic and inelastic electron-
molecule and ion-molecule set of cross sections for each pure gas composing the mixture. 
Each collision cross section set involves the most important collision processes that either 
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affect the charged species transport coefficients or are needed to follow the charged species 
chemical kinetics and energy or momentum exchange. For example, in order to calculate the 
macroscopic electron swarm parameters in water vapor, 21 collision cross sections must be 
known involving the rotational, the vibrational and the electronic excitation processes as 
well as the ionization, the dissociative attachment and the superelastic processes.  
One of the main difficulties is to validate for each pure gas that compose the mixture the 
chosen set of cross sections. To do that, a first reliable set of electron-molecule and ion-
molecule cross section for each individual neutral molecule in the gas mixture must be known. 
Then, in order to obtain the complete and coherent set of cross sections, it is necessary to adjust 
this first set of cross sections so as to fit experimental macroscopic coefficients with the 
calculated ones estimated from either a Boltzmann’s equation solution or a Monte Carlo 
simulation. The obtained solution is certainly not unique but as the comparisons concern 
several kinds of swarm macroscopic parameters having different dependencies on cross 
sections (ionization or attachment coefficient, drift velocity, transverse or longitudinal 
diffusion coefficient) over a wide range of reduced electric field or mean electron energy, most 
of the incoherent solutions are rejected. Finally, when the sets of cross section are selected for 
each pure gas, they can be used to calculate with a Bolzmann’s equation solution or a Monte 
Carlo simulation the macroscopic charged species transport and reaction parameters  
whatever the proportion of the pure gas in the background gas mixture. 

2.6 Summary 
Micro-discharges are characterized by the development of primary and secondary 
streamers. As a function of the high voltage applied on the small curvature electrode (DC or 
pulse), the micro-discharges show either a mono-filament or a large branching structure. 
The passage from multi-filaments to mono-filament structure can be observed if a 
sufficiently large high voltage pulse is applied. The transition can be explained through the 
memory effects accumulated during the previous discharge. The primary streamers 
propagate fast ionization waves characterized by streamer heads in which the electric field 
is high enough to generate high energetic electrons like in an electron gun. The streamer 
head propagates a high charge quantity toward the inter-electrode gap. The micro-plasmas 
are generated behind the streamer heads. They are small conductive channels that connect 
the streamer head to the electrode stressed by the high voltage. The primary streamers are 
then followed by a secondary streamer which is characterized by an electric field extension 
that ensures the transition between the displacement current and the conductive one when 
the primary streamer arrives on the cathode. Both primary and secondary streamers create 
radicals and excited species by electron-molecule impacts. The elastic and inelastic energy 
transfers generate a chemical activity, a thermal energy increase of the gas and a neutral gas 
dynamics. To better understand all these complex phenomena, a hydrodynamics model can 
be used based on conservation equations of charged and neutral particles coupled to 
Poisson equation for the electric field calculation.  

3. Chemical and hydrodynamics activation of gases using corona micro-
discharge 
3.1 Introduction 
During the past two decades several studies have shown that non-thermal plasmas reactor 
working in ambient air are very efficient sources of active species like charged particles, 



 
Electro-Hydrodynamics of Micro-Discharges in Gases at Atmospheric Pressure 

 

281 

radicals and excited species. In fact, and as already explained in the previous sections, in the 
non-thermal plasma reactor, the majority of the injected electrical energy goes into the 
generation of energetic electrons, rather than into gas heating. The energy in the micro-
plasma is thus directed preferentially to electron-impact dissociation, excitation and 
ionization of the background gas to generate active species that, in turn, induce the chemical 
activation of the medium. As a consequence, the non-thermal plasma reactors at 
atmospheric pressure are used in many applications such as flue gas pollution control 
(Fridman et al., 2005, Urashima et Chang, 2010), ozone production (Ono & Oda b, 2004), 
surface decontamination (Clement et al., 2001, Foest et al., 2005) and biomedical field 
(Laroussi, 2002, Villeger et al., 2008, Sarrette et al., 2010). For many applications, particularly 
in the removal of air pollutants, decontamination or medicine field, the non-thermal plasma 
approach would be most appropriate because of its energy selectivity and its capability for 
simultaneous treatment of pollutants, bacteria or cells for example. 
In micro-discharges the active species are created by energetic electrons during the primary 
and the secondary streamer propagation that last some hundred of nanoseconds. Despite 
these very fast phenomena, the energy transferred to the gas can initiate shock waves 
starting from the stressed high voltage electrodes. Furthermore, a part of the electronic 
energy is stored in the vibrational energy that relaxes in thermal form after some tens of 
microseconds. Anyway, it is worth to notice, that all the initial energy (chemical, thermal, 
among others) is transferred inside a very thin discharge filament i.e. in a very small volume 
compared with the volume of the plasma reactor. Therefore, the efficiency of the processes is 
correlated to the radical production efficiency during the discharge phase, the number of 
micro-discharges that cross the inter-electrode gap, the repetition frequency of the discharge 
and how the radicals are diffused and transported from the micro-discharge towards the 
whole reactor volume. 
In the following sections, the discharge and the post-discharge phase are simulated using 
the hydrodynamics models presented in section 2.5 in the case of a DC positive pin-to-plan 
corona reactor in dry air at atmospheric pressure.  

3.2 Discharge phase simulation 
The simulation conditions are described in detail in reference (Eichwald et al. 2008) as well 
as the used numerical methods and boundary conditions. To summarize, a DC high voltage 
of 7.2kV is applied on the pin of a pin-to-plane reactor filled with dry air at atmospheric 
pressure. The inter-electrode gap is of 7mm, the pin radius is equal to 25µm and photo-
ionisation phenomenon is taken into account in the simulation. Results in Fig. 10 and 11 are 
obtained by coupling equations (1) to (4) for electrons, two negative ions (O- and O2-), four 
positive ions (N2+, O2+, N+ and O+) and two radical atoms (O, N) reacting following 10 
selected reactions. Because of the time scale of the discharge phase (some hundred of 
nanoseconds), the radical atoms and the main neutral molecules (N2 and O2) are supposed 
to remain static during the discharge phase simulation. Fig. 10 shows the reduced electric 
field (E/N) expressed in Td (1Td=10-21 Vm2 so that 500Td at atmospheric pressure is 
equivalent to an electric field of 12MVm-1). When the high voltage is applied to the pin, 
some seed electrons are accelerated in the high geometric electric field around the pin. A 
luminous spot is observed experimentally near the pin thus indicating the formation of 
excited species due to a high electronic energy. On can notice that the electrons move 
towards the pin. Furthermore, the electrons gain sufficient energy to perform electronic 
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avalanches and a plasma spot is created just around the pin. The plasma is a quasi neutral 
electric gas in which the quantity of negative and positive species is quasi similar. 
Nevertheless, as the mobility of electrons is much higher than those of positive ions, the 
electric neutrality of the initial plasma spot is perturbed just in front of the pin. Indeed, the 
electrons are absorbed by the positive anodic pin while the positive ions remain quasi static 
due to their mass inertia. A positive charged space is formed and the electric field is no more 
at his maximum on the pin but just in front of it. This situation can be seen at time t=20ns in 
the first picture of Fig. 10.  
 

 
Fig. 10. Reduced electric field profile (500Td=12MVm-1) in function of time 

A streamer head is created that propagates from the pin towards the plane. This streamer 
head can be interpreted as the propagation of a positive charge space shock wave. At each 
time of its propagation, new seed electrons are created in front of the streamer head by 
photo-ionisation processes. These electrons are accelerated in the high electric field and their 
energy is high enough to ionize, dissociate and excite the main molecules of the gas. When 
the electrons have crossed the streamer head they drift towards the pin inside a small 
conductive plasma channel that connects the streamer head to the pin. A micro-plasma is 
formed behind the streamer head and is constricted by a cylinder of space charged electric 
field. A quasi-homogeneous small value of electric field is maintained inside the micro-
plasma in order to allow the drift of electrons from the streamer head to the pin that ensures 
the continuity of the total current density. The time laps needed for the streamer head to 
cross the inter-electrode gap is associated with the primary streamer propagation of the 
micro-discharge phase. The streamer head propagates a charge quantity which is absorbed 
by the cathode plane as soon as it arrives on the cathode plane. It results to the first current 
peak observed in Fig. 4 for a high voltage DC condition. The first red dashed curve in Fig. 10 
follows the trail left by the high electric field of the streamer head. Its shape corresponds to 
the luminous trail observed by streak camera shown in Fig. 3. When the primary streamer 
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arrives at the cathode plane, a secondary streamer starts its propagation from the pin. The 
secondary streamer is an electric field plateau extension of value of about 100Td. This 
extension ensures the continuity of the total current when the total charge space transported 
by the streamer head is absorbed at the cathode (Eichwald et al. 2008, Bastien & Marode, 
1985). The second red dashed curve follows the plateau extension. The evolution of the 
luminous trail left by the secondary streamer shown in Fig. 3 is due to the excited species 
created by the energetic electrons inside the secondary streamer expansion. Fig. 11 shows 
the radical O density after 150ns. The simulation indicates that about 70% of the radical O is 
produced inside the secondary streamer by dissociative collisions between electrons and O2 
molecules in reaction e+O2 → O + O. The concentration of O radical is also high near the 
cathode plane due to a higher electric field magnitude inside the streamer head when it 
reaches the cathode. 
 

 
Fig. 11. O radical profile (m-3) 

The effect on the neutral gas dynamics induced by the micro-discharge propagation is 
shown in Fig. 12 and 13. Fig. 12 shows the temperature profile of the background neutral 
gas at 0.1µs (=100ns) and 0.3µs (=300ns). Fig. 13 shows the pressure profile from 0.1µs to 4µs. 
The gas temperature just on the pin reaches some thousands of Kelvin but a mean value of 
about 700°K is obtained around the point. This value is coherent with experimental results 
obtained under very similar condition (Spyrou et al., 1992). The thermal shock creates high 
pressure gradients (see Fig. 13 at 0.1µs) and induces the gas expansion (see Fig. 13). Due to 
the inertia principle, the mass density near the point decreases more gradually in a time 
scale greater than the temperature increase. The gas expansion is characterised by a 
cylindrical and a spherical shock wave (see Fig. 13 from 0.3 to 0.9µs). Indeed, the initial 
pressure gradients (which induced the gas motion) follow the temperature ones which are 
constricted along the axis and inside the micro-plasma channel. We therefore observe a 
cylindrical pressure wave (represented by two vertical lines in the flat pressure mappings of 
Fig. 13) that propagates from the streamer axis towards the whole domain. The complex  
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Fig. 12. Gas temperature (°K) profile near the point 

structure of the pressure gradients near the point induces a spherical pressure wave 
superimposed to the cylindrical one. Such kind of spherical pressure waves were already 
observed experimentally (Ono & Oda b, 2004) using the laser Schlieren method. 
Furthermore, the simulation shows that the spherical shock wave propagates at the speed of 
sound as in the case of experimental work (Ono & Oda b, 2004). 
In this kind of simulation the effects of temperature and gas density variations on the 
streamer development are not taken into account. However, it should be in further works 
because if the gas density varies it will modify the reduced electric flied (E/N) and therefore 
the behaviour of the charged particles whose properties (like mobility, ionisation 
frequency,…) completely depend on the reduced electric field. Nevertheless, the previous 
results are able to give the initial profiles of all the source terms needed to simulate the post-
discharge phase evolution. 

3.3 Post-discharge phase simulation 
The discharge phase simulation gives very clear information on the gas dynamics and the 
spatio-temporal evolution of each active species of the background gas mixture. However, 
the time and space scales between the discharge phase and the post-discharge phase are 
completely different. Indeed, the micro-discharge generated micro-plasma in some hundred 
of nanoseconds while post-discharge phase must be considered with centimetre scale and 
milliseconds time laps. A complete simulation of both coupled phenomena for multi-pin 
reactor needs therefore adaptive meshes from micrometer to centimetre scale and also 
adaptive time scale from picoseconds (in order to follow the nano-scale discharge 
phenomena) up to fraction of milliseconds. This means a large number of discrete spatial 
cells and a huge computing time. In order to overcome these difficulties, on can assume that 
the effects of the discharges on the background gas can be simulated by locally injected 
inside the micro-discharge volumes and only during the discharge phase, average source 
terms estimated from the complete discharge phase model. 
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Fig. 13. Pressure wave (Pa) near the point (from 0.1 to 0.9µs) and in the whole domain (from 
1 to 4µs) 

As an example, let us suppose the multi-pin reactor described in Fig. 14. The domain is 
divided with square structured meshes of 50µm×50µm size. A DC high voltage of 7.2kV is 
applied on the pins. During each discharge phase, monofilament micro-discharges are 
created between each pin and the plane with a natural frequency of 10kHz. The micro-
discharges have an effective diameter of 50µm which correspond to the size of the chosen 
cells. Therefore, it is possible to inject in the cells located between each pin and the plane 
specific profiles of active source species and energy that will correspond the micro-discharge 
effects. 
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Fig. 14. 2D Cartesian simulation domain of the multi-pin to plane corona discharge reactor. 

As an example, consider equation (5) of section 2.5 applied to O radical atoms (‘i”=O).  
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The challenge is to correctly estimate the source term SOc inside the volume of each micro-
discharge. As the radial extension of the micro-discharges is equal to the cell size, the source 
term between each pin and the plane depends only on variable z. The average source term 
responsible of the creation of O radical during the discharge phase is therefore expressed as 
follow: 
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td is the effective micro-discharge duration, rd the effective micro-discharge radius and 
sOc(t,r,z) the source terms (m-3s-1) of radical production during the discharge phase (i.e. 
k(E/N)nenO2 for reaction 2e O O O+ → +  where k(E/N) is the corresponding reaction 
coefficient). All the data in equation (10) come from the complete simulation of the 
discharge phase. In the present simulation conditions, specific source terms are calculated 
for 5 actives species that are created during the discharge phase (N2(A3∑u+), N2(a’1∑u-), 
O2(a1∆g), N and O).  
The energy source terms in equations (8) and (9) are estimated using equations (11) and (12): 
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In equation (12), .j E
 

 is the total electron density power gained during the discharge phase 
and fv the fraction of this power transferred into vibrational excitation state of background 
gas molecules. One can notice the specificity of equation (11) related with the estimation of 
the direct random energy activation of the gas. In this equation, tp is the time scale of the 
pressure wave generation rather than the micro-discharge duration td. In fact, during the 
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post-discharge phase, the size of discrete cells is not sufficiently small to follow the 
gradients of pressure wave generated by thermal shock near the point (see Fig. 13). 
However, pressure waves transport a part of the stored thermal energy accumulated around 
each pin. From 0.1µs to 0.3µs, the gas temperature on the pins decreases from about 3000°K 
down to about 1200°K. After this time, the temperature variation in the micro-discharge 
volume is less affected by the gas dynamics. The diffusive phenomena become 
predominant. Therefore, taken into account the mean energy source term at time td will 
overestimate the temperature enhancement on the pins during the post-discharge phase 
simulation. As a consequence, the time tp is chosen equal to 300ns i.e. after the pressure 
waves have left the micro-discharge volume. 
As an example, Fig. 15 shows the temperature profile obtained at t=tp just after the first 
discharge phase. The results were obtained using the Fluent Sofware in the simulation 
conditions described in Fig. 14. As expected and just after the first discharge phase, the 
enhancement of the gas temperature is confined only inside the micro-plasma filaments 
located between each pin and the plane. The temperature profile along the inter-electrode 
gap is very similar to the one obtained by the complete discharge phase simulation (see Fig. 
12). It is also the case for the active source terms species. Fig. 16 shows at time t=td, the axial 
profile of some active species that are created during the discharge phase. The curves of the 
discharge model represent the axial profile density averaged along the radial direction. In  
 

 
Fig. 15. Gas temperature profile after the first discharge phase at t=tp = 300ns. 

 

 
Fig. 16. Comparison of numerical solutions given by the completed discharge and Fluent 
models at td=150 ns for O, N and O2 (a1∆g) densities. The zoom box shows, as an example, 
the O radical profile near a pin.  
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the case of the O radical, the density profile of Fig. 11 was averaged along the radial 
direction until rd=50µm and drawn in Fig. 16 with the magenta color. The light blue color 
curve represents the O radical profile obtained with the Fluent Software when the specific 
source term profile SOc(z) is injected between a pin and the cathode plane in the simulation 
conditions of Fig. 14. 
In the following results, the complete simulation of the successive discharge and post-
discharge phases involves 10 neutral chemical species (N, O, O3, NO2, NO, O2, N2, N2 
(A3∑u+), N2 (a’1∑u-) and O2 (a1∆g)) reacting following 24 selected chemical reactions. The pin 
electrodes are stressed by a DC high voltage of 7.2kV. Under these experimental conditions 
the current pulses appear each 0.1ms (i.e. with a repetition frequency of 10KHz). It means 
that the previous described source terms are injected every 0.1ms during laps time td or tp 
and only locally inside the micro-plasma filament located between each pin and the plane. 
The lateral air flow is fixed with a neutral gas velocity of 5m.s-1. 
Pictures in Fig. 17 show the cartography of the temperature and of the ozone density after 
1ms (i.e. after 10 discharge and post-discharge phases). One, two, three or four pins are 
stressed by the DC high voltage. Pictures (a) show that for the mono pin case, the lateral air 
flow and the memory effect of the previous ten discharges lead to a wreath shape of the 
space distribution of both the temperature and the ozone density.  
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Fig. 17. Temperature and ozone density profile at 1ms i.e. after ten discharge and post-
discharge phases. The number of high voltage pin is respectively (a) one, (b) two, (c) three 
and (d) four. The lateral air flow is 5m.s-1. 

The temperature and the ozone maps are very similar. Indeed, both radical and energy 
source terms are higher near the pin (i.e. inside the secondary streamer area expansion as it 
was shown in section 3.2). Furthermore, the production of ozone is obviously sensitive to 
the gas temperature diminution since it is mainly created by the three body reaction 

2 3O O M O M+ + → + (having a reaction rate inversely proportional to gas temperature). 
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For more than one pin, the temperature and ozone wreaths interact each other and their 
superposition induce locally a rise of both the gas temperature and ozone density (see Fig. 
17). The local maximum of temperature is around 325K for one pin case and increases up to 
350K for four anodic pins. 
The average temperature in the whole computational domain remains quasi constant and 
the small variations show a linear behavior with the number of anodic pins. The same linear 
tendency is observed for the ozone production in Fig. 18. After 1ms, and for the four pins 
case, the mean total density inside the computational domain reaches 4x1014 cm-3.  
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Fig. 18. Mean ozone density increase inside the computational domain of Fig. 14 as a 
function of the number of pins 

3.4 Summary 
The complete simulation of all the complex phenomena that are triggered by micro-
discharges in atmospheric non thermal plasma was found to be possible not as usually done 
in the literature only for 0D geometry but also in multidimensional geometry. In DC voltage 
conditions, a specific first order electro-hydrodynamics model was used to follow the 
development of the primary and secondary streamers in mono pin-to-plane reactor. The 
simulation results reproduce qualitatively the experimental observations and are able to 
give a full description of micro-discharge phases. Further works, already undertaken in 
small dimensions or during the first instants of the micro-discharge development 
(Pancheshnyi 2005, Papageorgiou et al. 2011 ), have to be achieved in 3D simulation in order 
to describe the complex branching structure for pulsed voltage conditions. Nevertheless, the 
micro-discharge phase simulation gives specific information about the active species profiles 
and density magnitude as well as about the energy transferred to the background gas. All 
these parameters were introduced as initial source terms in a more complete hydrodynamics 
model of the post-discharge phase. The fist obtained results show the ability of the Fluent 
software to solve the physico-chemical activity triggered by the micro-discharges.  

4. Conclusion 
The present chapter was devoted to the description of the hydrodynamics generated by 
corona micro-discharges at atmospheric pressure. Both experimental and simulation tools 
have to be exploited in order to better characterise the strongly coupled behaviour of micro-
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discharges dynamics and background gas dynamics. The experimental devices have to be 
very sensitive and precise in order to capture the main characteristics of nanosecond 
phenomena located in very thin filaments of micro scale extension. However, the recent 
evolution of experimental devices (ICCD or streak camera, DC and pulsed high voltage 
supply, among others) allow to better understand the physics of the micro-discharge. 
Furthermore, recent simulation of the micro-discharges involving the discharge and post-
discharge phase in multidimensional dimension was found to give precise information 
about the chemical and hydrodynamics activation of the background gas in an atmospheric 
non-thermal plasma reactor. These kinds of simulation results, coupled with experimental 
investigation, can be used in future works for the development of new design of plasma 
reactor very well adapted to the studied application either in the environmental field or 
biomedical one. 
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1. Introduction

Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit)
method for solving the Euler equations that posses strong nonlinear heat conduction and
very stiff source terms (Radiation hydrodynamics). This study essentially summarizes
our previous and current research related to this subject (Kadioglu & Knoll, 2010;
2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu et al., 2009; Kadioglu, Knoll, Sussman & Martineau, 2010). Implicit/Explicit
(IMEX) time integration techniques are commonly used in science and engineering
applications (Ascher et al., 1997; 1995; Bates et al., 2001; Kadioglu & Knoll, 2010; 2011;
Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009; Khan & Liu, 1994;
Kim & Moin, 1985; Lowrie et al., 1999; Ruuth, 1995). These methods are particularly attractive
when dealing with physical systems that consist of multiple physics (multi-physics problems
such as coupling of neutron dynamics to thermal-hydrolic or to thermal-mechanics
in reactors) or fluid dynamics problems that exhibit multiple time scales such as
advection-diffusion, reaction-diffusion, or advection-diffusion-reaction problems. In
general, governing equations for these kinds of systems consist of stiff and non-stiff terms.
This poses numerical challenges in regards to time integrations, since most of the temporal
numerical methods are designed specific for either stiff or non-stiff problems. Numerical
methods that can handle both physical behaviors are often referred to as IMEX methods.
A typical IMEX method isolates the stiff and non-stiff parts of the governing system and
employs an explicit discretization strategy that solves the non-stiff part and an implicit
technique that solves the stiff part of the problem. This standard IMEX approach can be
summarized by considering a simple prototype model. Let us consider the following scalar
model

ut = f (u) + g(u), (1)

where f (u) and g(u) represent non-stiff and stiff terms respectively. Then the IMEX strategy
consists of the following algorithm blocks:
Explicit block solves:

u∗ − un

Δt
= f (un), (2)

13
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Implicit block solves:
un+1 − u∗

Δt
= g(un+1). (3)

Here, for illustrative purposes we used only first order time differencing. In literature,
although the both algorithm blocks are formally written as second order time discretizations,
the classic IMEX methods (Ascher et al., 1997; 1995; Bates et al., 2001; Kim & Moin, 1985;
Lowrie et al., 1999; Ruuth, 1995) split the operators in such a way that the implicit and explicit
blocks are executed independent of each other resulting in non-converged non-linearities
therefore time inaccuracies (order reduction to first order is often reported for certain
applications). Below, we illustrate the interaction of an explicit and an implicit algorithm
block based on second order time discretizations of Equation(1) in classical sense,
Explicit block:

u1 = un + Δt f (un)

u∗ = (u1 + un)/2 + Δt/2 f (u1) (4)

Implicit block:

un+1 = u∗ + Δt/2[g(un) + g(un+1)]. (5)

Notice that the explicit block is based on a second order TVD Runge-Kutta method and the
implicit block uses the Crank-Nicolson method (Gottlieb & Shu, 1998; LeVeque, 1998; Thomas,
1999). The major drawback of this strategy as mentioned above is that it does not preserve the
formal second order time accuracy of the whole algorithm due to the absence of sufficient
interactions between the two algorithm blocks (refer to highlighted terms in Equation (4))
(Bates et al., 2001; Kadioglu, Knoll & Lowrie, 2010).
In an alternative IMEX approach that we have studied extensively in (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010;
Kadioglu et al., 2009), the explicit block is always solved inside the implicit block as part of the
nonlinear function evaluation making use of the well-known Jacobian-Free Newton Krylov
(JFNK) method (Brown & Saad, 1990; Knoll & Keyes, 2004). We refer this IMEX approach as
a self-consistent IMEX method. In this strategy, there is a continuous interaction between the
implicit and explicit blocks meaning that the improved solutions (in terms of time accuracy)
at each nonlinear iteration are immediately felt by the explicit block and the improved explicit
solutions are readily available to form the next set of nonlinear residuals. This continuous
interaction between the two algorithm blocks results in an implicitly balanced algorithm in
that all nonlinearities due to coupling of different time terms are consistently converged. In
other words, we obtain an IMEX method that eliminates potential order reductions in time
accuracy (the formal second order time accuracy of the whole algorithm is preserved). Below,
we illustrate the interaction of the explicit and implicit blocks of the self-consistent IMEX
method for the scalar model in Equation (1). The interaction occurs through the highlighted
terms in Equation (6).
Explicit block:

u1 = un + Δt f (un)

u∗ = (u1 + un)/2 + Δt/2 f (un+1) (6)

Implicit block:
un+1 = u∗ + Δt/2[g(un) + g(un+1)]. (7)
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Remark: We remark that another way of achieving a self-consistent IMEX integration that
preserves the formal numerical accuracy of the whole system is to improve the lack of
influence of the explicit and implicit blocks on one another by introducing an external iteration
procedure wrapped around the both blocks. More details regarding this methodology can be
found in (Kadioglu et al., 2005).

2. Applications

We have applied the above described self-consistent IMEX method to both
multi-physics and multiple time scale fluid dynamics problems (Kadioglu & Knoll,
2010; 2011; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009;
Kadioglu, Knoll, Sussman & Martineau, 2010). The multi-physics application comes
from a multi-physics analysis of fast burst reactor study (Kadioglu et al., 2009). The model
couples a neutron dynamics that simulates the transient behavior of neutron populations
to a mechanics model that predicts material expansions and contractions. It is important to
introduce a second order accurate numerical procedure for this kind of nonlinearly coupled
system, because the criticality and safety study can depend on how well we predict the
feedback between the neutronics and the mechanics of the fuel assembly inside the reactor.
In our second order self-consistent IMEX framework, the mechanics part is solved explicitly
inside the implicit neutron diffusion block as part of the nonlinear function evaluation. We
have reported fully second order time convergent calculations for this model (Kadioglu et al.,
2009).
As part of the multi-scale fluid dynamics application, we have solved multi-phase flow
problems which are modeled by incompressible two-phase Navier-Stokes equations that
govern the flow dynamics plus a level set equation that solves the inter-facial dynamics
between the fluids (Kadioglu, Knoll, Sussman & Martineau, 2010). In these kinds of models,
there is a strong non-linear coupling between the interface and fluid dynamics, e.g, the
viscosity coefficient and surface tension forces are highly non-linear functions of interface
variables, on the other hand, the fluid interfaces are advected by the flow velocity. Therefore,
it is important to introduce an accurate integration technique that converges all non-linearities
due to the strong coupling. Our self-consistent IMEX method operates on this model as
follows; the interface equation together with the hyperbolic parts of the fluid equations are
treated explicitly and solved inside an implicit loop that solves the viscous plus stiff surface
tension forces. More details about the splitting of the operators of the Navier-Stokes equations
in a self-consistent IMEX manner can be found in (Kadioglu & Knoll, 2011).
Another multi-scale fluid dynamics application comes from radiation hydrodynamics that
we will be focusing on in the remainder of this chapter. Radiation hydrodynamics models
are commonly used in astrophysics, inertial confinement fusion, and other high-temperature
flow systems (Bates et al., 2001; Castor, 2006; Dai & Woodward, 1998; Drake, 2007;
Ensman, 1994; Kadioglu & Knoll, 2010; Lowrie & Edwards, 2008; Lowrie & Rauenzahn, 2007;
Mihalas & Mihalas, 1984; Pomraning, 1973). A commonly used model considers the
compressible Euler equations that contains a non-linear heat conduction term in the energy
part. This model is relatively simple and often referred to as a Low Energy-Density Radiation
Hydrodynamics (LERH) in a diffusion approximation limit (Kadioglu & Knoll, 2010). A more
complicated model is referred to as a High Energy-Density Radiation Hydrodynamics (HERH)
in a diffusion approximation limit that considers a combination of a hydrodynamical model
resembling the compressible Euler equations and a radiation energy model that contains a
separate radiation energy equation with nonlinear diffusion plus coupling source terms to
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materials (Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). Radiation Hydrodynamics problems
are difficult to tackle numerically since they exhibit multiple time scales. For instance,
radiation and hydrodynamics process can occur on time scales that can differ from each
other by many orders of magnitudes. Hybrid methods (Implicit/Explicit (IMEX) methods)
are highly desirable for these kinds of models, because if one uses all explicit discretizations,
then due to very stiff diffusion process the explicit time steps become often impractically small
to satisfy stability conditions (LeVeque, 1998; Thomas, 1999). Previous IMEX attempts to solve
these problems were not quite successful, since they often reported order reductions in time
accuracy (Bates et al., 2001; Lowrie et al., 1999). The main reason for time inaccuracies was
how the explicit and implicit operators were split in which explicit solutions were lagging
behind the implicit ones. In our self-consistent IMEX method, the hydrodynamics part
is solved explicitly making use of the well-understood explicit schemes within an implicit
diffusion block that corresponds to radiation transport. Explicit solutions are obtained as
part of the non-linear functions evaluations withing the JFNK framework. This strategy has
enabled us to produce fully second order time accurate results for both LERH and more
complicated HERH models (Kadioglu & Knoll, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn,
2010).
In the following sections, we will go over more details about the LERH and HERH models and
the implementation/implications of the self-consistent IMEX technology when it is applied
to these models. We will also present a mathematical analysis that reveals the analytical
convergence behavior of our method and compares it to a classic IMEX approach.

2.1 A Low Energy Density Radiation Hydrodynamics Model (LERH)
This model uses the following system of partial differential equations formulated in
spherically symmetric coordinates.

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρu) = 0, (8)

∂

∂t
(ρu) +

1
r2

∂

∂r
(r2ρu2) +

∂p
∂r

= 0, (9)

∂E
∂t

+
1
r2

∂

∂r
[r2u(E + p)] =

1
r2

∂

∂r
(r2κ

∂T
∂r

), (10)

where ρ, u, p, E, and T are the mass density, flow velocity, fluid pressure, total energy density
of the fluid, and the fluid temperature respectively. κ is the coefficient of thermal conduction
(or diffusion coefficient) and in general is a nonlinear function of ρ and T. In this study, we
will use an ideal gas equation of state, i.e, p = RρT = (γ − 1)ρε, where R is the specific gas
constant per unit mass, γ is the ratio of specific heats, and ε is the internal energy of the fluid
per unit mass. The coefficient of thermal conduction will be assumed to be written as a power
law in density and temperature, i.e, κ = κ0ρaTb, where κ0, a and b are constants (Marshak,
1958). This simplified radiation hydrodynamics model allows one to study the dynamics of
nonlinearly coupled two distinct physics; compressible fluid flow and nonlinear diffusion.

2.2 A High Energy Density Radiation Hydrodynamics Model (HERH)
In general, the radiation hydrodynamics concerns the propagation of thermal radiation
through a fluid and the effect of this radiation on the hydrodynamics describing the fluid
motion. The role of the thermal radiation increases as the temperature is raised. At low
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temperatures the radiation effects are negligible, therefore, a low energy density model
(LERH) that limits the radiation effects to a non-linear heat conduction is sufficient. However,
at high temperatures, a more complicated high energy density radiation hydrodynamics
(HERH) model that accounts for more significant radiation effects has to be considered.
Accordingly, the governing equations of the HERH model consist of the following system

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρu) = 0, (11)

∂

∂t
(ρu) +

1
r2

∂

∂r
(r2ρu2) +

∂

∂r
(p + pν) = 0, (12)

∂E
∂t

+
1
r2

∂

∂r
[r2u(E + p)] = −cσa(aT4 − Eν)− 1

3
u

∂Eν

∂r
, (13)

∂Eν

∂t
+

1
r2

∂

∂r
[r2u(Eν + pν)] =

1
r2

∂

∂r
(r2cDr

∂Eν

∂r
) + cσa(aT4 − Eν) +

1
3

u
∂Eν

∂r
, (14)

where the flow variables and parameters that also occur in the LERH model are described
above. Here, more variable definitions come from the radiation physics, i.e, Eν is the
radiation energy density, pν = Eν

3 is the radiation pressure, c is the speed of light, a is the
Stephan-Boltzmann constant, σa is the macroscopic absorption cross-section, and Dr is the
radiation diffusion coefficient. From the simple diffusion theory, Dr can be written as

Dr(T) =
1

3σa
. (15)

We note that we solve a non-dimensional version of Equations (11)-(14) in order to
normalize large digit numbers (c, σa, a etc.) and therefore improve the performance of
the non-linear solver. The details of the non-dimensionalization procedure are given in
(Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). The non-dimensional system is the following,

∂ρ

∂t
+

1
r2

∂

∂r
(r2ρu) = 0, (16)

∂

∂t
(ρu) +

1
r2

∂

∂r
(r2ρu2) +

∂

∂r
(p + P pν) = 0, (17)

∂E
∂t

+
1
r2

∂

∂r
[r2u(E + p)] = −Pσa(T4 − Eν)− 1

3
Pu

∂Eν

∂r
, (18)

∂Eν

∂t
+

1
r2

∂

∂r
[r2u(Eν + pν)] =

1
r2

∂

∂r
(r2κ

∂Eν

∂r
) + σa(T4 − Eν) +

1
3

u
∂Eν

∂r
, (19)

where P =
aT4

0
ρ0c2

s,0
is a non-dimensional parameter that measures the radiation effects on the

flow and is roughly proportional to the ratio of the radiation and fluid pressures.

3. Numerical procedure

Here, we present the numerical procedure for the LERH model. The extension to the
HERH model is straight forward. First, we split the operators of Equations (8)-(10) into two
pieces one being the pure hydrodynamics part (hyperbolic conservation laws) and the other
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Fig. 1. Flowchart of the second order self-consistent IMEX algorithm

accounting for the effects of radiation transport (diffusion equation). For instance, the pure
hydrodynamics equations can be written as

∂U
∂t

+
∂(AF)

∂V
+

∂G
∂r

= 0, (20)

where U = (ρ, ρu, E)T, F(U) = (ρu, ρu2, u(E + p))T, and G(U) = (0, p, 0)T . Then the
diffusion equation becomes

∂E
∂t

=
∂

∂V
(Aκ

∂T
∂r

), (21)

where V = 4
3 πr3 is the generalized volume coordinate in one-dimensional spherical geometry,

and A = 4πr2 is the associated cross-sectional area. Notice that the total energy density,
E, obtained by Equation (20) just represents the hydrodynamics component and it must be
augmented by Equation (21).
Our algorithm consists of an explicit and an implicit block. The explicit block solves Equation
(20) and the implicit block solves Equation (21). We will briefly describe these algorithm
blocks in the following subsections. However, we note again that the explicit block is
embedded within the implicit block as part of a nonlinear function evaluation as it is depicted
in Fig. 1. This is done to obtain a nonlinearly converged algorithm that leads to second order
calculations. We also note that similar discretizations, but without converging nonlinearities,
can lead to order reduction in time convergence (Bates et al., 2001). Before we go into details
of the individual algorithm blocks, we would like to present a flow diagram that illustrates the
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execution of the whole algorithm in the self-consistent IMEX sense (refer to Fig. 1). According
to this diagram, at beginning of each Newton iteration, we have the temperature values based
on the current Newton iterate. This temperature is passed to the explicit block that returns the
updated density, momentum, and a prediction to total energy. Then we form the non-linear
residuals (e.g, forming the IMEX function in Section 3.3) for the diffusion equation out of
the updated and predicted values. With the IMEX function in hand, we can execute the JFNK
method. After the Newton method convergences, we get second order converged temperature
and total energy density field.

3.1 Explicit block
Our explicit time discretization is based on a second order TVD Runge-Kutta method
(Gottlieb & Shu, 1998; Gottlieb et al., 2001; Shu & Osher, 1988; 1989). The main reason why we
choose this methodology is that it preserves the strong stability properties of the explicit Euler
method. This is important because it is well known that solutions to the conservation laws
usually involve discontinuities (e.g, shock or contact discontinuities) and (Gottlieb & Shu,
1998; Gottlieb et al., 2001) suggest that a time integration method which has the strong
stability preserving property leads to non-oscillatory calculations (especially at shock or
contact discontinuities).
A second order two-step TVD Runge-Kutta method for (20) can be cast as
Step-1 :

ρ1 = ρn − Δt
1
r2

∂

∂r
(r2ρu)n,

(ρu)1 = (ρu)n − Δt[
1
r2

∂

∂r
(r2ρu2) +

∂p
∂r

]n,

E1 = En − Δt{ 1
r2

∂

∂r
[r2u(E + p)]}n,

(22)

Step-2 :

ρn+1 =
ρn + ρ1

2
− Δt

2
1
r2

∂

∂r
(r2ρu)1,

(ρu)n+1 =
(ρu)n + (ρu)1

2
− Δt

2
{ 1

r2
∂

∂r
(r2ρu2)1 +

∂

∂r
(ρ1RTn+1)},

E∗ = En + E1

2
− Δt

2
{ 1

r2
∂

∂r
[r2u1(cvρ1Tn+1 +

1
2

ρ1(u1)2 + ρ1RTn+1)]}.

(23)

We used the following equation of state relations in (22)- (23);

p = ρRTE = cvρT +
1
2

ρu2, (24)

where cv = R
γ−1 is the fluid specific heat with R being the universal gas constant. This

explicit algorithm block interacts with the implicit block through the highlighted Tn+1 terms
in Equation (23). We can observe that the implicit equation (21) is practically solved for T
by using the energy relation. Therefore, the explicit block is continuously impacted by the
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Fig. 2. Computational Conventions.

implicit Tn+1 solutions at each non-linear Newton iteration. This provides the tight nonlinear
coupling between the two algorithm blocks. Notice that the kth nonlinear Newton iteration of
the implicit block corresponds to Tn+1 ← Tk and k → (n + 1) upon the convergence of the
Newton method (refer to Fig. 1). Also, the ∗ values in Equation (23) are predicted intermediate
values and later they are corrected by the implicit block which is given in the next subsection.
One observation about this algorithm block is that some calculations are redundant related
to Equation (22). In other words, Equation (22) can be computed only once at the beginning
of each Newton iteration, because the non-linear iterations do not impact (22). This can lead
overall less number of function evaluations.
Now we shall describe how we evaluate the numerical fluxes needed by Equations (22) and
(23). For simplicity, we consider (20) to describe our fluxing procedure. Basically, it is based
on the Local Lax Friedrichs (LLF) method (we refer to (LeVeque, 1998; Thomas, 1999) for the
details of the LLF method and for more information in regards to the explicit discretizations
of conservation laws). For instance, if we consider the following simple discretization for
Equation (20),

U1
i = Un

i −
Δt

ΔVi
(Ai+1/2Fn

i+1/2 − Ai−1/2Fn
i−1/2)−

Δt
Δr

(Gn
i+1/2 − Gn

i+1/2), (25)

where ΔVi = V(ri+1/2)− V(ri−1/2), Ai±1/2 = A(ri±1/2), and indices i and i + 1/2 represent
cell center and cell edge values respectively (refer to Fig. 2), then the Local Lax Friedrichs method
defines Fi+1/2 and Gi+1/2 as

Fi+1/2 =
F(UR

i+1/2) + F(UL
i+1/2)

2
− αi+1/2

UR
i+1/2 − UL

i+1/2
2

, (26)

Gi+1/2 =
G(UR

i+1/2) + G(UL
i+1/2)

2
, (27)

where α = max{|λL
1 |, |λR

1 |, |λL
2 |, |λR

2 |, |λL
3 |, |λR

3 |} in which λ1 = u − c, λ2 = u, λ3 = u + c, and
c is the sound speed. The sound speed is defined by

c =

√
∂p
∂ρ

, (28)

300 Hydrodynamics – Advanced Topics



An IMEX Method for the Euler Equations That Posses Strong Non-Linear Heat Conduction and Stiff Source Terms (Radiation Hydrodynamics) 9

where ∂p
∂ρ = RT in this study. UR

i+1/2 and UL
i+1/2 are the interpolated values at (i + 1/2)th cell

edge from the right and left side, i.e,

UR
i+1/2 = Ui+1 − Δr

2
Ur,i+1,

UL
i+1/2 = Ui +

Δr
2

Ur,i, (29)

where

Ur,i = minmod(a, b) =

⎧⎨⎩
a if |a| < |b| and ab > 0,
b if |b| < |a| and ab > 0,
0 if ab ≤ 0,

(30)

where

a =
Ui+1 − Ui

Δr
, (31)

b =
Ui − Ui−1

Δr
. (32)

3.2 Implicit block
The explicit block produces the following solution vector

Un → U∗ =

⎛⎝ ρn+1

(ρu)n+1

E∗

⎞⎠ .

This information is used to discretize Equation (21) as follows,

(cvρn+1Tn+1 + 1
2 ρn+1(un+1)2 − E∗)i

Δt
=

1
2

∂

∂V
(Aκn+1 ∂Tn+1

∂r
)i +

1
2

∂

∂V
(Aκn ∂Tn

∂r
)i, (33)

where

∂

∂V
(Aκ

∂T
∂r

)i =
Ai+1/2κi+1/2(Ti+1 − Ti)/Δr

ΔVi
− Ai−1/2κi−1/2(Ti − Ti−1)/Δr

ΔVi
. (34)

Notice that this implicit discretization resembles to the Crank-Nicolson method (Strikwerda,
1989; Thomas, 1998). We solve Equation (33) iteratively for Tn+1. The nonlinear solver needed
by Equation (33) is based on the Jacobian-Free Newton Krylov method which is described
in the next subsection. When the Newton method converges all the nonlinearities in this
discretization, we obtain the following fully updated solution vector,

U∗ → Un+1 =

⎛⎝ ρn+1

(ρu)n+1

En+1

⎞⎠ .

301
An IMEX Method for the Euler Equations That Posses Strong 
Non-Linear Heat Conduction and Stiff Source Terms (Radiation Hydrodynamics)



10 Will-be-set-by-IN-TECH

3.3 The Jacobian-Free Newton Krylov method and forming the IMEX function
The Jacobian-Free Newton Krylov method (e.g, refer to (Brown & Saad, 1990; Kelley, 2003;
Knoll & Keyes, 2004)) is a combination of the Newton method that solves a system of
nonlinear equations and a Krylov subspace method that solves the Newton correction
equations. With this method, Newton-like super-linear convergence is achieved in the
nonlinear iterations, without the complexity of forming or storing the Jacobian matrix. The
effects of the Jacobian matrix are probed only through approximate matrix-vector products
required in the Krylov iterations. Below, we provide more details about this technique.
The Newton method solves F(T) = 0 (e.g, assume Equation (33) is written in this form)
iteratively over a sequence of linear system defined by

J(Tk)δTk = −F(Tk),

Tk+1 = Tk + δTk, k = 0, 1, · · · (35)

where J(Tk) = ∂F
∂T is the Jacobian matrix and δTk is the update vector. The Newton iteration

is terminated based on a required drop in the norm of the nonlinear residual, i.e,

‖F(Tk)‖2 < tolres‖F(T0)‖2 (36)

where tolres is a given tolerance. The linear system, Newton correction equation (35), is solved
by using the Arnoldi based Generalized Minimal RESidual method (GMRES)(Saad, 2003)
which belongs to the general class of the Krylov subspace methods(Reid, 1971). We note that
these subspace methods are particularly suitable choice when dealing with non-symmetric
linear systems. In GMRES, an initial linear residual, r0, is defined for a given initial guess δT0,

r0 = −F(T)− JδT0. (37)

Here we dropped the index k convention since the Krylov (GMRES) iteration is performed
at a fixed k. Let j be the Krylov iteration index. The jth Krylov iteration minimizes
‖JδTj + F(T)‖2 within a subspace of small dimension, relative to n (the number of unknowns),
in a least-squares sense. δTj is drawn from the subspace spanned by the Krylov vectors,
{r0, Jr0, J2r0, · · · , Jj−1r0} , and can be written as

δTj = δT0 +
j−1

∑
i=0

βi(J)
ir0, (38)

where the scalar βi minimizes the residual. The Krylov iteration is terminated based on the
following inexact Newton criteria (Dembo, 1982)

‖JδTj + F(T)‖2 < γ‖F(T)‖2, (39)

where the parameter γ is set in terms of how tight the linear solver should converge at
each Newton iteration (we typically use γ = 10−3). One particularly attractive feature
of this methodology is that it does not require forming the Jacobian matrix. Instead, only
matrix-vector multiplications, Jv, are needed, where v ∈ {r0, Jr0, J2r0, · · · } . This leads to
the so-called Jacobian-Free implementations in which the action of the Jacobian matrix can be
approximated by

Jv =
F(T + εv)− F(T)

ε
, (40)
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where ε = 1
n‖v‖2

∑n
i=1 b|ui| + b, n is the dimension of the linear system and b is a constant

whose magnitude is within a few orders of magnitude of the square root of machine roundoff
(typically 10−6 for 64-bit double precision).
Here, we briefly describe how to form the IMEX function F(T). We refer F(T) as the IMEX
function, since it uses both explicit (hydrodynamics) and implicit (diffusion) information.
Notice that for a method that uses all implicit information, F(T) would correspond to a regular
nonlinear residual function. The following pseudo code describes how to form F(T) (we also
refer to Fig. 1).
Evaluating F(Tk) :

Given Tk where k represents the current Newton iteration.
Call Hydrodynamics block with (ρn, un, En, Tk) to compute ρn+1, un+1, E∗.
Form F(Tk) based on the Crank-Nicolson method,

F(Tk) =
[cvρn+1Tk+ 1

2 ρn+1(un+1)2−E∗ ]
Δt − 1

2
∂

∂V (Aκk ∂Tk

∂r )− 1
2

∂
∂V (Aκn ∂Tn

∂r ).

It is important to note that we are not iterating between the implicit and explicit blocks.
Instead we are executing the explicit block inside of a nonlinear function evaluation defined
by F(Tk). The unique properties of JFNK allow us to perform a Newton iteration on this
IMEX function, and thus JFNK is a required component of this nonlinearly converged IMEX
approach.

3.4 Time step control
In this section, we describe two procedures to determine the computational time steps that
are used in our test calculations. The first one was originally proposed by (Rider & Knoll,
1999). The idea is to estimate the dominant wave propagation speed in the problem. In
one dimension this involves calculating the ratio of temporal to spatial derivatives of the
dependent variables. In principle, it is sufficient to consider the following hyperbolic equation
rather than using the entire system of the governing equations

∂E
∂t

+ υ f
∂E
∂r

= 0, (41)

where the unknown υ f represents the front velocity. This gives

υ f = − ∂E/∂t
∂E/∂r

. (42)

As noted in Rider & Knoll (1999), to avoid problems from lack of smoothness the following
numerical approximation is used to calculate υ f

υn
f =

∑(|En
i − En−1

i |/Δt)

∑(|En
i+1 − En

i−1|/2Δr)
. (43)

Then the new time step is determined by the Courant-Friedrichs-Lewy (CFL) condition

Δtn+1 = C
‖ Δr ‖

υn
f

, (44)
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where ‖ Δr ‖ uses the L1 norm as in Equation (43). We can further simplify Equation (44) by
using Equation (43), i.e,

Δtn+1 =
1
2

∑ |En
i+1 − En

i−1|
∑(|En

i − En−1
i |/Δt)

. (45)

We remark that the time steps determined by this procedure is always compared with the pure
hydrodynamics time steps and the most restrictive ones are selected. The hydrodynamics time
steps are calculated by

ΔtHydro,n+1 = CFL × Δr
maxi|u + c|i , (46)

where u is the fluid velocity and c is the sound speed (e.g, refer to Equation (28)). The
coefficient CFL is set to 0.5. Alternative time step control criterion are used for radiation
hydrodynamics problems (Bowers & Wilson, 1991). One commonly used approach is based
on monitoring the maximum relative change in E. For instance,

Δtn+1 = Δtn

√
(ΔE/E)n+1

(ΔE/E)max
, (47)

where

(
ΔE
E

)n+1 = maxi(
|En+1

i − En
i |

En+1
i + E0

), (48)

where the parameter E0 is an estimate for the lower bound of the energy density. Comparing
Equation (47) to (45) we observed that Equation (45) is computationally more efficient.
Therefore, we use Equation (45) in our numerical test problems.

4. Computational results

4.1 Smooth problem test
We use the LERH model to produce numerical results for this test problem. In this test,
we run the code until a particular final time so that the computational solutions are free of
shock waves and steep thermal fronts. The problem is to follow the evolution of the nonlinear
waves that results from an initial energy deposition in a narrow region. The initial total energy
density is given by

E(r, 0) =
ε0 exp (−r2/c2

0)

(c0
√

π)3 , (49)

where c0 is a constant and set to 1/4 for this test. Note that c0 → 0 gives a delta function at
origin. We use the cell averaged values of E as in (Bates et al., 2001), i.e., we integrate (49) over
the ith cell from ri−1/2 to ri+1/2 so that

Ei =
ε0[er f (ri+1/2/c0)− er f (ri−1/2/c0)]− 2πc2

0[ri+1/2E(ri+1/2)− ri−1/2E(ri−1/2)]

ΔVi
, (50)

where the symbol er f denotes the error function. The initial density is set to ρ = 1/r. The
initial temperature is calculated by using E = cvρT + 1

2 ρu where u = 0 initially. The boundary
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Fig. 3. Solution profiles resulting from the smooth problem test. The solutions are calculated
for t f inal = 0.01 with M = 200 cell points.

conditions for the hydrodynamics variables are reflective and outflow boundary conditions at
the left and right ends of the computational domain respectively. The zero-flux boundary
conditions are used for the temperature at both ends (e.g, ∂T/∂r|r=0 = 0). The coefficient of
thermal conduction is set to κ(T) = T5/2.
We run the code until t = 0.01 with ε0 = 100 using 200 cell points. The size of the
computational domain is set to 1 (e.g, R0 = 1 in Fig. 2). Fig. 3 shows the computed solutions
for density, pressure, velocity, and temperature. As can be seen, there is no shock formation or
steep thermal fronts occurred around this time. Fig. 4 shows our numerical time convergence
analysis. To measure the rate of time convergence, we run the code with a fixed mesh (e.g,
M = 200 cell points) and different time step refinements to a final time (e.g, t = 0.01). This
provides a sequence of solution data (EΔt, EΔt/2, EΔt/4, · · · ). Then we measure the L2 norm of
errors between two consecutive time step solutions (‖EΔt −EΔt/2‖2, ‖EΔt/2 −EΔt/4‖2, · · · ) and
plot these errors against to a second order line. It is clear from Fig. 4 that we achieve second
order time convergence unlike (Bates et al., 2001) fails to provide second order accurate results
for the same test.
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Fig. 4. Temporal convergence plot for the smooth problem test. t f inal = 0.01 with M = 200
cell points.

4.2 Point explosion test
We use the HERH model for this test. We note that we have studied this test by using
both of the LERH and HERH models and reported our results in two consecutive papers
(Kadioglu & Knoll, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). This section reviews
our numerical findings from (Kadioglu, Knoll, Lowrie & Rauenzahn, 2010). In this test,
important physics such as the propagation of sharp shock discontinuities and steep thermal
fronts occur. This is important, because this test enables us to study/determine the time
accuracy of the strong numerical coupling of two distinct physical processes.
Typically a point explosion is characterized by the release of large amount of energy in a
small region of space (few cells near the origin). Depending on the magnitude of the energy
deposition, weak or strong explosions take place. If the initial explosion energy is not large
enough, the diffusive effect is limited to region behind the shock. However, if the explosion
energy is large, then the thermal front can precede the hydrodynamics front. Both weak
and strong explosions are studied in (Kadioglu & Knoll, 2010) where the LERH model is
considered. Here, we solve/recast the strong explosion test by using the HERH model. The
problem setting is as follows. The initial total energy density is given by

E0 =
ε0 exp (−r2/c2

0)

(c0
√

π)3 , (51)

where ε0 = 235 and c0 = 1/300. The initial fluid and radiation energies are set to E(r, 0) =
Eν(r, 0) = E0/2. The fluid density is initialized by ρ(r, 0) = r−19/9. The initial temperature is
calculated by using E = cvρT/γ + 1

2 ρu2 with the initial u = 0. The radiation diffusivity (κ in
Equation (19)) is calculated by considering the LERH model and comparing it with the sum
of Equation (18) plus P times Equation (19). For instance

∂

∂t
(E + PEν) +

1
r2

∂

∂r
[r2u(E + p + P(Eν + pν))] =

1
r2

∂

∂r
(r2Pκ

∂Eν

∂r
), (52)
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is compared to Equation (6) of (Kadioglu & Knoll, 2010). Then κ becomes

κ(ρ, T) = κ0
ρaTb

4PT3 , (53)

where κ0 = 102, a = −2 and b = 13/2 as in (Kadioglu & Knoll, 2010). We set P = 10−4 and
σa = 108 that appear in Equations (18) and (19).
We compute the solutions until t = 0.02 using 400 cell points. Fig. 5 shows fluid density, fluid
pressure, flow velocity, fluid energy, fluid temperature, and radiation temperature profiles. At
this time (t = 0.02), hydrodynamical shocks are depicted near r = 0.2. In this test case, the
thermal front (located near r = 0.8) propagates faster than the hydrodynamical shocks due
to large initial energy deposition. Fig. 6 shows the time convergence analysis for different
field variables. Clearly, we have obtained second order time accuracy for all variables. This
convergence result is important, because this problem is a difficult one meaning that the
coupling of different physics is highly non-linear and it is a challenge to produce fully second
order convergence from an operator split method for these kinds of problems. One comment
that can be made about our spatial discretization (LLF method), though it is not the primary
focus of this study, is that our numerical results (figures in Fig. 5) indicate that the LLF fluxing
procedure provides very good shock capturing with no spurious oscillations at or near the
discontinuities.

4.3 Radiative shock test
The problem settings for this test are similar to (Drake, 2007; Lowrie & Edwards, 2008) where
more precise physical definitions can be found. Radiative shocks are basically strong shock
waves that the radiative energy flux plays essential role in the governing dynamics. Radiative
shocks occur in many astrophysical systems where they move into an upstream medium
leaving behind an altered downstream medium. In this test, we assume that a simple planar
radiative shock exists normal to the flow as it is illustrated in Fig. 7. The initial shock profiles
are determined by considering the given values in Region-1 and finding the values in Region-2
of Fig. 7. To find the values in Region-2, we use the so-called Rankine-Hugoniot relations or
jump conditions (LeVeque, 1998; Smoller, 1994; Thomas, 1999). A general formula for the
radiation hydrodynamics jump conditions is given in (Lowrie & Edwards, 2008). For instance

s(ρ2 − ρ1) = ρ2u2 − ρ1u1, (54)

s(ρ2u2 − ρ1u1) = (ρ2u2
2 + p2 + P pν,2)− (ρ1u2

1 + p1 + P pν,1), (55)

s(E2 − E1) = u2(E2 + p2 + P pν,2)− u1(E1 + p1 + P pν,1), (56)

s(Eν,2 − Eν,1) = u2(Eν,2)− u1(Eν,1), (57)

where s is the propagation speed of the shock front. In our test problem, we assume that
the radiation temperature is smooth. Therefore, it is sufficient to use the jump conditions for
the compressible Euler equations to initiate hydrodynamics shock profiles. The Euler jump
conditions can be easily obtained by dropping the radiative terms in Equations (54), (55), (56),
and (57). Then the necessary formulae to initialize the shock solutions are

s = u1 + c1

√
1 +

γ + 1
2γ

(
p2

p1
− 1), (58)
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Fig. 5. Point explosion test with t = 0.02 and M = 400 cell points.
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Fig. 6. Temporal convergence plot for various field variables from the point explosion test.
t = 0.001 and 400 cell points are used.
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Fig. 7. A schematic diagram of a shock wave situation with the indicated density, velocity,
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p2
p1

= 1 +
2γ

γ + 1
[(

s − u1
c1

)2 − 1], (59)

u2 = u1 +
p2 − p1

ρ1(s − u1)
, (60)

ρ2

ρ1
=

s − u1
s − u2

, (61)

where c1 =
√

γ
p1
ρ1

is the speed of sound in the fluid at upstream conditions. More details

regarding the derivation of Equations (58)-(61) can be found in (Anderson, 1990; LeVeque,
1998; Smoller, 1994; Thomas, 1999; Wesseling, 2000).
We are interested in solving a left moving radiative shock problem. To achieve this, we set
the initial shock speed s = −0.1 in Equation (58). Other upstream flow variables are set as
follows; ρ1 = 1.0, T1 = 1.0, and M1 = u1/c1 = 1.2 as the upstream Mach number. Then
we calculate the pressure from a calorically perfect gas relation (p1 = Rρ1T1). Using p1 and
ρ1, we calculate the upstream sound speed c1 =

√
γp1/ρ1 together with u1 = M1c1. With

these information in hand, we can easily calculate the downstream values using Equations
(58)-(61). The total fluid energies in both upstream and downstream directions are calculated
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Fig. 9. Temporal convergence plot for the material and radiation temperature from the
radiative shock test. t = 0.02 and 400 cell points are used.

by using the energy relation E = cvρT + 1
2 ρu2. The radiation temperature is assumed to be a

smooth function across the shock and equal to T1 and T2 on the left and right boundary of the
computational domain, i.e., we choose

Tν(x, 0) =
(T2 − T1)

2
tanh(1000x) +

(T2 + T1)

2
. (62)

The initial radiation energy is calculated by Eν = T4
ν . Other parameters that appear in

Equations (16)-(19) are set as P = 10−4, σa = 106, and κ = 1. These parameters are chosen
to be consistent with (Lowrie & Edwards, 2008). We solve Equations (16)-(19), the HERH
model, in Cartesian coordinates with the above initial conditions. The solutions use fixed
boundary conditions at both ends. In other words, at each time step, the solutions are reset
to the initial boundary values. The numerical calculations are carried out with 400 cell points
and Δt = 10−6. Fig. 8 shows the time history of the solutions. Notice that the solutions
are highly transient, therefore it is a good test to carry out a time convergence study. Fig. 9
shows time convergence analysis for the fluid and the radiation temperature. Second order
time convergence can be clearly seen in both fields.

5. Convergence analysis

In this section, we present a mathematical analysis (modified equation analysis) to study
the analytical convergence behavior of our self-consistent IMEX method and compare it to a
classic IMEX method. The modified equation analysis (truncation error analysis) is performed
by considering the LERH model (Equations (8)-(10) or (20)-(21)). Also, for simplicity, we
assume that the system given by Equations (20)-(21) is written in cartesian coordinates. In the
introduction, we first described a classic IMEX approach then presented our self-consistent
IMEX method. Therefore, we shall follow the same order in regards to below mathematical
analysis.
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5.1 A classic IMEX method
The classic IMEX method operates on Equations (20)-(21) as follows.
Explicit block:
Step-1:

ρ1 = ρn − Δt
∂

∂x
(ρu)n,

(ρu)1 = (ρu)n − Δt
∂

∂x
[(ρu2)n + pn],

E1 = En − Δt
∂

∂x
{un[En + pn ]}, (63)

Step-2:

ρn+1 =
ρ1 + ρn

2
− Δt

2
∂

∂x
(ρu)1,

(ρu)n+1 =
(ρu)1 + (ρu)n

2
− Δt

2
∂

∂x
[ρ1(u2)1 + Rρ1Tn],

E∗ =
En + E1

2
− Δt

2
∂

∂x
{u1[cvρ1Tn +

1
2

ρ1(u1)2 + Rρ1Tn]}, (64)

Implicit block:
En+1 − E∗

Δt
=

1
2

∂

∂x
(κn+1 ∂Tn+1

∂x
) +

1
2

∂

∂x
(κn ∂Tn

∂x
), (65)

where we incorporated with the equation of states relations plus we assume that the explicit
block is based on a second order TVD Runga-Kutta method and the implicit block is similar
to the Crank-Nicolson method. Notice that the classic IMEX method is executed in such a
way that the implicit temperature does not impact the explicit block (refer to the highlighted
terms in Equation (64)). We carry out the modified equation analysis for the energy part of
Equations (63)-(65), but the same procedure can easily be extended to the whole system. We
consider

E1 = En − Δt
∂

∂x
{un[En + pn]}, (66)

E∗ =
En + E1

2
− Δt

2
∂

∂x
{u1[cvρ1Tn +

1
2

ρ1(u1)2 + Rρ1Tn]}, (67)

Substituting Equation (66) into (67), we get

E∗ = En − Δt
2

∂

∂x
{un[En + pn]} − Δt

2
∂

∂x
{u1[cvρ1Tn +

1
2

ρ1(u1)2 + Rρ1Tn]}. (68)

We let L(En) = − ∂
∂x {un[En + pn ]} and use Tn = T1 − ΔtTn

t + O(Δt2) , then (68) becomes

E∗ = En +
Δt
2

L(En) − Δt
2

∂

∂x
{u1[cvρ1(T1 − Δt

∂Tn

∂t
+O(Δt2))

+
1
2

ρ1(u1)2 + Rρ1(T1 − Δt
∂Tn

∂t
+O(Δt2))]}. (69)
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Carrying out the necessary algebra, Equation (69) becomes

E∗ = En +
Δt
2

L(En) +
Δt
2

L(E1) +
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R) + O(Δt3), (70)

where L(E1) = − ∂
∂x {u1[cvρ1T1 + 1

2 ρ1(u1)2 + Rρ1T1]} = − ∂
∂x {u1[E1 + p1]}. Further

simplification comes from the following identity

L(E1) = L(En) + Δt
∂L
∂t

+ O(Δt2). (71)

Inserting Equation (71) into (70), we get

E∗ = En + ΔtL(En) +
Δt2

2
∂L
∂t

+
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R) + O(Δt3). (72)

Now, we consider the following Taylor series for the implicit block (Equation (65))

En+1 = En + Δt
∂En

∂t
+

Δt2

2
∂2En

∂t2 + O(Δt3), (73)

Tn+1 = Tn + Δt
∂Tn

∂t
+

Δt2

2
∂2Tn

∂t2 + O(Δt3), (74)

κn+1 = κn + Δt
∂κn

∂t
+

Δt2

2
∂2κn

∂t2 + O(Δt3). (75)

Substituting Equations (73), (74), (75), and (72) into Equation (65), we form the truncation term
as

τn = En + Δt
∂En

∂t
+

Δt2

2
∂2En

∂t2 − [En + ΔtL(En) +
Δt2

2
∂L(En)

∂t

+
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R)]− Δt

1
2

∂

∂x
[(κn + Δt

∂κn

∂t
+

Δt2

2
∂2κn

∂t2 )

∂

∂x
(Tn + Δt

∂Tn

∂t
+

Δt2

2
∂2Tn

∂t2 )]− Δt
1
2

∂

∂x
(κn ∂Tn

∂x
) + O(Δt3). (76)

Cancelling the opposite sign common terms and grouping the other terms together, we get

τn = Δt [
∂En

∂t
− L(En)] +

Δt2

2
∂

∂t
[
∂En

∂t
− L(En)]

− [
Δt
2

∂

∂x
(κn ∂Tn

∂x
) +

Δt
2

∂

∂x
(κn ∂Tn

∂x
)]

− [
Δt2

2
∂

∂x
(κn ∂Tn

t
∂x

) +
Δt2

2
∂

∂x
(κn

t
∂Tn

∂x
)]

+
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R) + O(Δt3). (77)

This further simplifies by using

∂

∂t
[

∂

∂x
(κn ∂Tn

∂x
)] =

∂

∂x
(κn

t
∂Tn

∂x
) +

∂

∂x
(κn ∂Tn

t
∂x

). (78)
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Then we have

τn = Δt [
∂En

∂t
− L(En)− ∂

∂x
(κn ∂Tn

∂x
)]

+
Δt2

2
∂

∂t
[
∂En

∂t
− L(En)− ∂

∂x
(κn ∂Tn

∂x
)]

+
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R) + O(Δt3). (79)

From the energy equation (Equation (10)) we have ∂En

∂t − L(En) − ∂
∂x (κ

n ∂Tn

∂x ) = 0, thus
Equation (79) becomes

τn =
Δt2

2
ρ1u1 ∂Tn

∂t
(cv + R) + O(Δt3). (80)

This shows that the classic IMEX method carries first order terms in the resulting truncation
error. This conclusion will be verified by our numerical computations (refer to Fig. 10).

5.2 A self-consistent IMEX method
We have already described how the self-consistent IMEX method operates on Equations
(20)-(21) in Section 3.1. However, to be able to easily follow the analysis, we repeat the
self-consistent operator splitting below.
Explicit block:
Step-1:

ρ1 = ρn − Δt
∂

∂x
(ρu)n,

(ρu)1 = (ρu)n − Δt
∂

∂x
[(ρu2)n + pn],

E1 = En − Δt
∂

∂x
{un[En + pn ]}, (81)

Step-2:

ρn+1 =
ρ1 + ρn

2
− Δt

2
∂

∂x
(ρu)1,

(ρu)n+1 =
(ρu)1 + (ρu)n

2
− Δt

2
∂

∂x
[ρ1(u2)1 + Rρ1Tn+1],

E∗ =
En + E1

2
− Δt

2
∂

∂x
{u1[cvρ1Tn+1 +

1
2

ρ1(u1)2 + Rρ1Tn+1]}, (82)

Implicit block:
En+1 − E∗

Δt
=

1
2

∂

∂x
(κn+1 ∂Tn+1

∂x
) +

1
2

∂

∂x
(κn ∂Tn

∂x
). (83)

Notice that the implicit temperature impacts the explicit block in this case (refer to the
highlighted terms in Equation (82)). Again, we perform the modified equation analysis on
the energy part of Equations (81)-(83). Substituting E1 into E∗, we get

E∗ = En − Δt
2

∂

∂x
{un[En + pn]} − Δt

2
∂

∂x
{u1[cvρ1Tn+1 +

1
2

ρ1(u1)2 + Rρ1Tn+1]}. (84)
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We let L(En) = − ∂
∂x {un[En + pn ]} and use Equation (74) in (84) to get

E∗ = En +
Δt
2

L(En) − Δt
2

∂

∂x
{u1[cvρ1(Tn + Δt

∂Tn

∂t
+ O(Δt2))

+
1
2

ρ1(u1)2 + Rρ1(Tn + Δt
∂Tn

∂t
+ O(Δt2))]}. (85)

Now, we insert Tn = T1 − Δt ∂Tn

∂t + O(Δt2) in Equation (85) and perform few algebra to get

E∗ = En +
Δt
2

L(En) +
Δt
2

L(E1) + O(Δt3), (86)

where L(E1) = − ∂
∂x {u1[cvρ1T1 + 1

2 ρ1(u1)2 + Rρ1T1]}. Equation (86) can be further simplified
by using (71),

E∗ = En + ΔtL(En) +
Δt2

2
∂L
∂t

+ O(Δt3). (87)

Making use of the Taylor series given in Equations (73), (74), (75), and Equation (87) in the
implicit discretization (83), we form the truncation error term as

τn = En + Δt
∂En

∂t
+

Δt2

2
∂2En

∂t2 − (En + ΔtL(En) +
Δt2

2
∂L(En)

∂t
)

− Δt
1
2

∂

∂x
[(κn + Δt

∂κn

∂t
+

Δt2

2
∂2κn

∂t2 )
∂

∂x
(Tn + Δt

∂Tn

∂t
+

Δt2

2
∂2Tn

∂t2 )]

− Δt
1
2

∂

∂x
(κn ∂Tn

∂x
) + O(Δt3). (88)

Cancelling the opposite sign common terms, grouping the other terms together, and making
use of Equation (78), we get

τn = Δt [
∂En

∂t
− L(En)− ∂

∂x
(κn ∂Tn

∂x
)] +

Δt2

2
∂

∂t
[
∂En

∂t
− L(En)− ∂

∂x
(κn ∂Tn

∂x
)] + O(Δt3).(89)

Again from the energy equation, we know that ∂En

∂t − L(En)− ∂
∂x (κ

n ∂Tn

∂x ) = 0, thus Equation
(89) becomes

τn = O(Δt3), (90)

clearly proving that the self-consistent IMEX method is second order.
Here, we numerically verify our analytical findings about the two IMEX approaches. We solve
the point explosion problem studied in (Kadioglu & Knoll, 2010) by using the LERH model
and M = 200 cell points until the final time t = 0.02. We note that we ran the code twice as
longer final time than the original test in order to allow the numerical methods to depict more
accurate time behaviors. In Fig. 10, we plot the L2-norm of errors for variety of flow variables
committed by the both approaches. Fig. 10 clearly shows that the classic IMEX method
suffers from order reductions as predicted by our mathematical analysis. We present more
detailed analysis regarding more general IMEX methods (e.g., Strang splitting type methods
(Knoth & Wolke, 1999; Strang, 1968)) in our forthcoming paper (Kadioglu, Knoll & Lowrie,
2010).
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Fig. 10. The self-consistent IMEX method versus a classic IMEX method in terms of the time
convergence.

6. Conclusion

We have presented a self-consistent implicit/explicit (IMEX) time integration technique for
solving the Euler equations that posses strong nonlinear heat conduction and very stiff source
terms (Radiation hydrodynamics). The key to successfully implement an implicit/explicit
algorithm in a self-consistent sense is to carry out the explicit integrations as part of the
non-linear function evaluations within the implicit solver. In this way, the improved time
accuracy of the non-linear iterations is immediately felt by the explicit algorithm block and
the more accurate explicit solutions are readily available to form the next set of non-linear
residuals. We have solved several test problems that use both of the low and high energy
density radiation hydrodynamics models (the LERH and HERH models) in order to validate
the numerical order of accuracy of our scheme. For each test, we have established second
order time convergence. We have also presented a mathematical analysis that reveals the
analytical behavior of our method and compares it to a classic IMEX approach. Our analytical
findings have been supported/verified by a set of computational results. Currently, we are
exploring more about our multi-phase IMEX study to solve multi-phase flow systems that
posses tight non-linear coupling between the interface and fluid dynamics.
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1. Introduction

The study of colloidal dispersions of micro-nano sized particles in a liquid is of great
interest for industrial processes and technological applications. The understanding of the
microstructure and fundamental properties of this kind of systems at microscopic level is also
useful for biological and biomedical applications.
However, a colloidal suspension must be placed somewhere and the dynamics of the
micro-particles can be modified as a consequence of the confinement, even if we have
a low-confinement system. The hydrodynamics interactions between particles and with
the enclosure’s wall which contains the suspension are of extraordinary importance to
understanding the aggregation, disaggregation, sedimentation or any interaction experienced
by the microparticles. Aspects such as corrections of the diffusion coefficients because of
a hydrodynamic coupling to the wall must be considered. Moreover, if the particles are
electrically charged, new phenomena can appear related to electro-hydrodynamic coupling.
Electro-hydrodynamic effects (Behrens & Grier (2001a;b); Squires & Brenner (2000)) may have
a role in the dynamics of confined charged submicron-sized particles. For example, an
anomalous attractive interaction has been observed in suspensions of confined charged
particles (Grier & Han (2004); Han & Grier (2003); Larsen & Grier (1997)). The possible
explanation of this observation could be related with the distribution of surface’s charges
of the colloidal particles and the wall (Lian & Ma (2008); Odriozola et al. (2006)). This effect
could be also related to an electrostatic repulsion with the charged quartz bottom wall or to a
spontaneous macroscopic electric field observed on charged colloids (Rasa & Philipse (2004)).
In this work, we are going to describe experiments performed by using magneto-rheological
fluids (MRF), which consist (Rabinow (1948)) on suspensions formed by water or some
organic solvent and micro or nano-particles that have a magnetic behaviour when a
external magnetic field is applied upon them. Then, these particles interact between
themselves forming aggregates with a shape of linear chains (Kerr (1990)) aligned
in the direction of the magnetic field. When the concentration of particles inside
the fluid is high enough, this microscopic behaviour turns to significant macroscopic
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consequences, as an one million-fold increase in the viscosity of the fluid, leading
to practical and industrial applications, such as mechanical devices of different types
(Lord Corporation, http://www.lord.com/ (n.d.); Nakano & Koyama (1998); Tao (2000)). This
magnetic particle technology has been revealed as useful in other fields such as microfluidics
(Egatz-Gómez et al. (2006)) or biomedical techniques (Komeili (2007); Smirnov et al. (2004);
Vuppu et al. (2004); Wilhelm, Browaeys, Ponton & Bacri (2003); Wilhelm et al. (2005)).
In our case, we investigate the dynamics of the aggregation of magnetic particles under a
constant and uniaxial magnetic field. This is useful not only for the knowledge of aggregation
properties in colloidal systems, but also for testing different models in Statistical Mechanics.
Using video-microscopy (Crocker & Grier (1996)), we have measured the different exponents
which characterize this process during aggregation (Domínguez-García et al. (2007)) and also
in disaggregation (Domínguez-García et al. (2011)), i.e., when the chains vanishes as the
external field is switched off. These exponents are based on the temporal variation of the
aggregates’ representative quantities, such as the size s or length l. For instance, the main
dynamical exponent z is obtained through the temporal evolution of the chains length s ∼ tz.
Our experiments analyse the microestructure of the suspensions, the aggregation of the
particles under external magnetic fields as well as disaggregation when the field is switched
off. The observations provide results that diverge from what a simple theoretical model
says. These differences may be related with some kind of electro-hydrodynamical interaction,
which has not been taken into account in the theoretical models.
In this chapter, we would like first to summarize the basic theory related with our system
of magnetic particles, including magnetic interactions and Brownian movement. Then,
hydrodynamic corrections and the Boltzmann sedimentation profile theory in a confined
suspension of microparticles will be explained and some fundamentals of electrostatics in
colloids are explained. In the next section, we will summarize some of the most recent
remarkable studies related with the electrostatic and hydrodynamic effects in colloidal
suspensions. Finally, we would like to link our findings and investigations on MRF with
the theory and studies explained herein to show how the modelization and theoretical
comprehension of these kind of systems is not perfectly understood at the present time.

2. Theory

In this section, we are going to briefly describe the theory related with the main interactions
and effects which can be suffered by colloidal magnetic particles: magnetic interactions,
Brownian movement, hydrodynamic interactions and finally electrostatic interactions.

2.1 Magnetic particles
By the name of “colloid” we understand a suspension formed by two phases: one is a fluid
and another composed of mesoscopic particles. The mesoscopic scale is situated between the
tens of nanometers and the tens of micrometers. This is a very interesting scale from a physical
point of view, because it is a transition zone between the atomic and molecular scale and the
purely macroscopic one.
When the particles have some kind of magnetic property, we are talking about magnetic
colloids. From this point of view, two types of magnetic colloids are usually considered:
ferromagnetic and magneto-rheologic. The ferromagnetic fluids or ferrofluids (FF) are
colloidal suspensions composed by nanometric mono-domain particles in an aqueous or
organic solvent, while magneto-rheological fluids (MRF) are suspensions of paramagnetic
micro or nanoparticles. The main difference between them is the permanent magnetic moment
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of the first type: while in a FF, magnetic aggregation is possible without an external magnetic
field, this does not occur in a MRF. The magnetic particles of a MRF are usually composed by a
polymeric matrix with small crystals of some magnetic material embedded on it, for example,
magnetite. When the particles are superparamagnetic, the quality of the magnetic response is
improved because the imanation curve has neither hysteresis nor remanence.
Another point of view for classifying these suspensions is the rheological perspective. By
rheology, we name the discipline which study deformations and flowing of materials when
some stress is applied. In some ranges, it is possible to consider the magnetic colloids
as Newtonian fluids because, when an external magnetic field is applied, the stress is
proportional to the velocity of the deformation. On a more global perspective, these fluids
can be immersed on the category of complex fluids (Larson (1999)) and are studied as complex
systems (Science. (1999)).
Now we are going to briefly provide some details about magnetic interactions: magnetic
dipolar interaction, interaction between chains and irreversible aggregation.

2.1.1 Magnetic dipolar interaction.

Fig. 1. Left: Two magnetic particles under a magnetic field �H. The angle between the field
direction and the line that join the centres of the particles is named as α. Right: The attraction
cone of a magnetic particle. Top and bottom zones are magnetically attractive, while regions
on the left and on the right have repulsive behaviour.

As it has been said before, the main interest of MRF are their properties in response to external
magnetic fields. These properties can be optical (birefringence (Bacri et al. (1993)), dichroism
(Melle (2002))) or magnetical or rheological. Under the action of an external magnetic field,
the particles acquire a magnetic moment and the interaction between the magnetic moments
generates the particles aggregation in the form of chain-like structures. More in detail, when
a magnetic field �H is applied, the particles in suspension acquire a dipolar moment:

�m =
4πa3

3
�M (1)

where �M = χ�H and a are respectively the particle’s imanation and radius, whereas χ is the
magnetic susceptibility of the particle.
The most simple way for analysing the magnetic interaction between magnetic particles is
through the dipolar approximation. Therefore, the interaction energy between two magnetic
dipoles �mi and �mj is:

Ud
ij =

μ0μs

4πr3

[
(�mi · �mj)− 3(�mi · r̂)(�mj · r̂)

]
(2)

where�ri is the position vector of the particle i,�r =�rj −�ri joins the centre of both particles and
r̂ =�r/r is its unitary vector.
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Then, we can obtain the force generated by �mi under �mj as:

�Fd
ij =

3μ0μs

4πr4

{[
(�mi · �mj)− 5(�mi · r̂)(�mj · r̂)

]
r̂ + (�mj · r̂)�mi + (�mi · r̂)�mj

}
(3)

If both particles have identical magnetic properties and knowing that the dipole moment

aligns with the field, we obtain the following two expressions for potential energy and force:

Ud
ij =

μ0μsm2

4πr3 (1 − 3 cos2 α) (4)

�Fd
ij =

3μ0μsm2

4πr4

[
(1 − 3 cos2 α)r̂ − sin(2α)α̂

]
(5)

where α is the angle between the direction of the magnetic field Ĥ, and the direction set by r̂
and where α̂ is its unitary vector.
From the above equations, it follows that the radial component of the magnetic force is
attractive when α < αc and repulsive when α > αc, where αc = arccos 1√

3
� 55◦, so

that the dipolar interaction defines an hourglass-shaped region of attraction-repulsion in
the complementary region (see Fig.1). In addition, the angular component of the dipolar
interaction always tends to align the particles in the direction of the applied magnetic field.
Thus, the result of this interaction will be an aggregation of particles in linear structures
oriented in the direction of Ĥ.
The situation depicted here is very simplified, especially from the viewpoint of magnetic
interaction itself. In the above, we have omitted any deviations from this ideal behaviour, such
as multipole interactions or local field (Martin & Anderson (1996)). Multipolar interactions
can become important when μp/μs � 1. The local field correction due to the magnetic
particles themselves generate magnetic fields that act on other particles, increasing the
magnetic interaction. For example, when the magnetic susceptibility is approximately χ ∼
1, this interaction tends to increase the angle of the cone of attraction from 55◦ to about 58◦
and also the attractive radial force in a 25% and the azimuth in a 5% (Melle (2002)).
One type of fluid, called electro-rheological (ER fluids) is the electrical analogue of MRF. This
type of fluid is very common in the study of kinematics of aggregation. Basically, the ER
fluids consist of suspensions of dielectric particles of sizes on the order of micrometers (up to
hundreds of microns) in conductive liquids. This type of fluid has some substantial differences
with MRF, especially in view of the ease of use. The development of devices using electric
fields is more complicated, requiring high power voltage; in addition, ER fluids have many
more problems with surface charges than MRF, which must be minimized as much as possible
in aggregation studies. However, basic physics, described above, are very similar in both
systems, due to similarities between the magnetic and electrical dipolar interaction.

2.1.2 Magnetic interaction between chains
Chains of magnetic particles, once formed, interact with other chains in the fluid and with
single particles. In fact, the chains may laterally coalesce to form thicker strings (sometimes
called columns). This interaction is very important, especially when the concentration
of particles in suspension is high. The first works that studied the interaction between
chains of particles come from the earliest studies of external field-induced aggregation
(Fermigier & Gast (1992); Fraden et al. (1989))
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Basically, the aggregation process has two stages: first, the chains are formed on the basis of
the aggregation of free particles, after that, more complex structures are formed when chains
aggregate by lateral interaction. When the applied field is high and the concentration of
particles in the fluid is low, the interactions between the chains are of short range. Under
this situation, there are two regions of interaction between the chains depending on the lateral
distance between them: when the distance between two strings is greater than two diameters
of the particle, the force is repulsive; if the distance is lower, the resultant force is attractive,
provided that one of the chains is moved from the other a distance equal to one particle’s
radius in the direction of external field (Furst & Gast (2000)). In this type of interactions, the
temperature fluctuations and the defects in the chains morphology are particularly important.
Indeed, variations on these two aspects generate different types of theoretical models for the
interaction between chains. The model that takes into account the thermal fluctuations in the
structure of the chain for electro-rheological fluids is called HT (Halsey & Toor (1990)), and
was subsequently extended to a modified HT model (MHT) (Martin et al. (1992)) to include
dependence on field strength. The latter model shows that only lateral interaction occurs
between the chains when the characteristic time associated with their thermal relaxation is
greater than the characteristic time of lateral assembling between them. Possible defects in
the chains can vary the lateral interaction, mainly through perturbations in the local field.

2.1.3 Irreversible aggregation
The irreversible aggregation of colloidal particles is a phenomenon of fundamental
importance in colloid science and its applications. Basically, there are two basic scenarios
of irreversible colloidal aggregation. The first, exemplified by the model of Witten & Sander
(1981), is often referred to as Diffusion-Limited Aggregation (DLA). In this model, the particles
diffuse without interaction between them, so that aggregation occurs when they collide with
the central cluster. The second scenario is when there is a potential barrier between the
particles and the aggregate, so that aggregation is determined by the rate at which the particles
manage to overcome this barrier. The second model is called Colloid Reaction-Limited
Aggregation (RLCA). These two processes have been observed experimentally in colloidal
science (Lin et al. (1989); Tirado-Miranda (2001)).
These aggregation processes are often referred as fractal growth (Vicsek (1992)) and the
aggregates formed in each process are characterized by a concrete fractal dimension. For
example, in DLA we have aggregates with fractal dimension D f ∼ 1.7, while RLCA provides
D f ∼ 2.1. A very important property of these systems is precisely that its basic physics is
independent of the chemical peculiarities of each system colloidal i.e., these systems have
universal aggregation. Lin et al. (1989) showed the universality of the irreversible aggregation
systems performing light scattering experiments with different types of colloidal particles
and changing the electrostatic forces in order to study the RLCA and DLA regimes in a
differentiated way. They obtained, for example, that the effective diffusion coefficient (Eq.28)
did not depend on the type of particle or colloid, but whether the process aggregation was
DLA or RLCA.
The DLA model was generalized independently by Meakin (1983) and Kolb et al. (1983),
allowing not only the diffusion of particles, but also of the clusters. In this model, named
Cluster-Cluster Aggregation (CCA), the clusters can be added by diffusion with other clusters
or single particles. Within these systems, if the particles are linked in a first touch, we obtain
the DCLA model. The theoretical way to study these systems is to use the theory of von
Smoluchowski (von Smoluchowski (1917)) for cluster-cluster aggregation among Monte Carlo
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simulations (Vicsek (1992)). This theory considers that the aggregation kinetics of a system of
N particles, initially separated and identical, aggregate; and these clusters join themselves
to form larger objects. This process is studied through the distribution of cluster sizes ns(t)
which can be defined as the number of aggregates of size s per unit of volume in the system
at a time t. Then, the temporal evolution is given by the following set of equations:

dns(t)
dt

=
1
2 ∑

i+j=s
Kijninj − ns ∑

j=1
Ksjnj, (6)

where the kernel Kij represents the rate at which the clusters of size i and j are joined to
form a cluster of size s = i + j. All details of the physical system are contained in the kernel
Kij, so that, for example, in the DLA model, the kernel is proportional to the product of the
cross-section of the cluster and the diffusion coefficient. Eq.6 has certain limitations because
only allows binary aggregation processes, so it is just applied to processes with very low
concentration of particles.
A scaling relationship for the cluster size distribution function in the DCLA model was
introduced by Vicsek & Family (1984) to describe the results of Monte Carlo simulations. This
scaling relationship can be written as:

ns ∼ s−2g (s/S(t)) (7)

where S(t) is the average cluster size of the aggregates:

S(t) ≡
∑
s

s2ns(t)

∑
s

sns(t)
(8)

and where the function g(x) is in the form:

g(x)
{∼ xΔ if x � 1
� 1 if x � 1

One consequence of the scaling 7 is that a temporal power law for the average cluster size can
be deduced:

S(t) ∼ tz (9)

Calculating experimentally the average cluster size along time, we can obtain the kinetic
exponent z. Similarly to S(t) is possible to define an average length in number of aggregates
l(t):

l(t) ≡
∑
s

s ns(t)

∑
s

ns(t)
=

1
N(t) ∑

s
s ns(t) =

Np

N(t)
(10)

where N(t) = ∑ ns(t) is the total number of cluster in the system at time t and Np = ∑ s ns(t)
is the total number of particles. Then, it is expected that N had a power law form with
exponent z′:

N(t) ∼ t−z′ (11)

l(t) ∼ tz′ (12)
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2.2 Brownian movement and microrheology
Robert Brown1 (1773-1858) discovered the phenomena that was denoted with his name in
1827, when he studied the movement of pollen in water. The explanation of Albert Einstein in
1905 includes the named Stokes-Einstein relationship for the diffusion coefficient of a particle
of radius a immersed in a fluid of viscosity η at temperature T:

D =
kBT

6πaη
(13)

where kB is the Boltzmann constant. This equation can be generalized for an object (an
aggregate) formed by a number of particles N:

D =
kBT

6πηRg

where Rg is the radius of gyration defined as Rg(N) =
√

1/N ∑N
i=1 r2

i , where ri is the
distance between the i particle to the centre of mass of the cluster. If Rg = a, we recover
the Stokes-Einstein expression.
Let’s see how to calculate the diffusion coefficient D from the observation of individual
particles moving in the fluid. The diffusion equation says that:

∂ρ

∂t
= D∇2ρ

where ρ is here the probability density function of a particle that spreads a distance Δr at time
t. This equation has as a solution:

ρ(Δr, t) =
1

(4πDt)3/2 e−Δr2/4Dt (14)

If the Brownian particle moves a distance Δr in the medium on which is immersed after a time
δt, then the mean square displacement (MSD) weighted with the probability function given
by Eq.14 is given by: 〈

(Δr)2
〉
=

〈
|r(t + δt)− r(t)|2

〉
= 6Dt (15)

The diffusion coefficient can be obtained by 15 and observing the displacement Δr of the
particle for a fixed δt. In two dimensions, the equations 14 and 15 are:

ρ(Δr, t) =
1

(4πDt)
e−Δr2/4Dt (16)〈

|r(t + δt)− r(t)|2
〉
= 4Dt (17)

The equations 13 and 15 are the basis for the development of a experimental technique known
as microrheology (Mason & Weitz (1995)). This technique consists of measuring viscosity and
other mechanical quantities in a fluid by monitoring, using video-microscopy, the movement

1 Literally: While examining the form of these particles immersed in water, I observed many of them very evidently
in motion [..]. These motions were such as to satisfy me, after frequently repeated observation, that they arose
neither from currents in the fluid, nor from its gradual evaporation, but belonged to the particle itself. (Edinburgh
New Philosophical Journal, Vol. 5, April to September, 1828, pp. 358-371)
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of micro-nano particles (regardless their poralization). Thus, it is possible to obtain the
viscosity of the medium simply by studying the displacement of the particle in the fluid. The
microrheology has been widely used since the late nineties of last century (Waigh (2005)). Due
to microrheology needs and for the sake of the analysis of the thermal fluctuation spectrum of
probe spheres in suspension, the generalized Stokes-Einstein equation (Mason & Weitz (1995))
was developed. This expression is similar to Eq.13, but introducing Laplace transformed
quantities:

D̃(s) =
kB T

6πas η̃s
(18)

where s is the Laplace frequency, and η̃s and D̃(s) are the Laplace transformed viscosity and
diffusion coefficient. The dynamics of the Brownian particles can be very different depending
on the mechanical properties of the fluid. This equation is the base for the rheological study,
by obtaining its viscoelastic moduli (Mason (2000)), of the complex fluid in which the particles
are immersed.
If we only track the random motion of colloidal spheres moving freely in the fluid, we
are talking of “passive” microrheology, but there are variations on this technique named
“active” microrheology, for example, using optical tweezers (Grier (2003)). This technique
allows to study the response of colloidal particles in viscoelastic fluids and the structure
of fluids in the micro-nanometer scales (Furst (2005)), measure viscoelastic properties of
biopolymers (like DNA) and the cell membrane (Verdier (2003)). Other useful methodologies
are the two-particles microrheology (Crocker et al. (2000)) which allows to accurately measure
rheological properties of complex materials, the use of rotating chains following an external
rotating magnetic field (Wilhelm, Browaeys, Ponton & Bacri (2003); Wilhelm, Gazeau & Bacri
(2003)) or magnetic bead microrheometry (Keller et al. (2001)).

2.3 Hydrodynamics
When we are talking about hydrodynamics in a colloidal suspension of particles we need to
introduce the Reynolds number, Re, defined as:

Re ≡ ρr v a
η

(19)

where ρr is the relative density, a is the particle radius, v is the velocity of the particle in the
fluid which has a viscosity η. This number reflects the relation between the inertial forces and
the viscous friction. If we are in a situation of low Reynolds number dynamics, as it usually
happens in the physical situation here studied, the inertial terms in the Newton equations can
be neglected, and mẍ ∼= 0.
However, even in the case of low Reynolds number, the diffusion coefficient of particles
in a colloidal system may have certain deviations from the expressions explained above.
The diffusion coefficient can vary due to hydrodynamic interactions between particles, the
morphology of the clusters, or because of the enclosure containing the suspension. When
a particle moves near a “wall”, the change in the Brownian dynamics of the particle is
remarkable. The effective diffusion coefficient then varies with the distance of the particle
from the wall (Russel et al. (1989)), the closer is the particle to the wall, the lower the diffusion
coefficient. The interest of the modification on Brownian dynamics in confinement situations
is quite large, for example to understand how particles migrate in porous media, how the
macromolecules spread in membranes, or how cells interact with surfaces.
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Fig. 2. Comparative analysis between the relative diffusion coefficient for the Brenner
equation (Eq.20) and the first order approximation (Eq.21), as a function of the distance to the
wall z for a particle of diameter 1 (z-unit are in divided by the diameter of the particle). These
two expressions are practically equal when z ≥ 1.5.

2.3.1 Particle-wall interaction.
When a particle diffuses near a wall, thanks to the linearity of Stokes equations, the diffusion
coefficient can be separated into two components, one parallel to the wall D� and the other
perpendicular D⊥. In the literature, several studies in this regard can be found (Crocker
(1997); Lin et al. (2000); Russel et al. (1989)). One particularly important is the study of
Faucheux & Libchaber (1994) where measurements of particles confined between two walls
are reported. This work provides a table with the diffusion coefficients obtained (theoretical
and experimental) for different samples (different radius and particles) and different distances
from the wall, from 1 to 12 μm. For example, for a particle diameter 2.5 μm, a distance of 1.3 μ
m from the wall and with a density 2.1 times that of water, a diffusion coefficient D/D0 = 0.32
is obtained, where D0 is the diffusion coefficient given by Eq.13.
There are no closed analytical solutions for this type of problem, with the exception of that
obtained for a sphere moving near a flat wall in the direction perpendicular to it (Brenner
(1961)):

D⊥(z)
D0

=

{
4
3

sinh α
∞

∑
n=1

n(n + 1)
(2n − 1)(2n + 3)

[
2 sinh[(2n + 1)α] + (2n + 1) sinh[2α]

4 sinh2[(n + 1/2)α]− (2n + 1)2 sinh2[α]
− 1

]}−1

(20)
where α ≡ arccosh (z/a) and a is the radius particle and z is the distance between the centre
of the particle and the wall.
Theoretical calculations in this regard are generally based on the methods of reflections, which
involves splitting the hydrodynamic interaction between the wall and the particle in a linear
superposition of interactions of increasing order. Using this method, it is possible to obtain a
iterative solution for this problem in power series of (a/z). In the case of the perpendicular
direction it is found:

D⊥(z)
D0

∼= 1 − 9
8

( a
z

)
+ O

( a
z

)3
(21)
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In the Fig.2 a comparison between the exact equation 20 and this first order expression 21 is
plotted. These two expressions provide similar results when z ≥ 1.5.
In the case of the parallel direction to the wall we have the following approximation :

D�(z)
D0

∼= 1 − 9
16

a
z
+

1
8

a3

z3 − 45
256

a4

z4 − 1
16

a5

z5 + ... (22)

which is commonly used in their first order:

D�(z)
D0

∼= 1 − 9
16

( a
z

)
+ O

( a
z

)3
(23)

If we are thinking about one particle between two close walls, Dufresne et al. (2001) showed
how it is possible to deduce, using the Stokeslet method (Liron & Mochon (1976)), a very
complicated closed expression for the diffusion coefficients when a � h, being h the distance
between the two walls. However, the method of reflections gives approximated theoretical
expressions. Basically, there are three approximations that provide good results and which
are different because of small modifications in the drag force. The first of these methods
is the Linear Superposition Approximation (LSA) where the drag force over the sphere is
chosen as the sum of the force that makes all the free fluid over the sphere. A second
method is the Coherent Superposition Approximation (CSA) whose modification proposed by
Bensech & Yiacoumi (2003) was named as Modified Coherent Superposition Approximation
(MCSA) and gives the following expression:

D(z)
D0

=

{
1 + [C(z)− 1] + [C(h − z)− 1] +

∞

∑
n=1

(−1)n nh − z − a
nh − z

[C(nh + z)− 1]

+
∞

∑
n=1

(−1)n (n − 1)h + z − a
(n − 1)h + z

[C((n + 1)h − z)− 1]

}−1

(24)

where the function C(z) is the inverse of the normalized diffusion coefficient (D0/D(z)) in the
only one wall situation.
Another interesting physical configuration is the hydrodynamic coupling of two Brownian
spheres near to a wall. Dufresne et al. (2000) showed that the collective diffusion coefficients
in the directions parallel and perpendicular to the surface are related by a hydrodynamical
coupling because of the fact that the surrounded fluid moved by one of the particles affects
the other. This wall-induced effect may have an influence in the origin of some anomalous
effects in experiments of confined microparticles in suspension.

2.3.2 Particle-particle interaction
Another effect of considerable importance, or at least, that we must take into account, is the
hydrodynamic interaction between two particles. This effect is quantified by the parameter
ρ = r/a where r is the radial distance between the centres of the particles and a is their
radius. Crocker (1997) showed how the modification of the diffusion coefficient due to the
mutual hydrodynamic interaction between the two particles varies in the directions parallel
or perpendicular to the line joining the centres of mass. Finally, they obtained that the
predominant effect is the one that occurs in the radial direction and which is given by:

D
D0

∼= − 15
4ρ4 (25)
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The effect in the perpendicular direction is much lower and negligible (O(ρ−6)).

2.3.3 Anisotropic friction
When the aggregates are formed in the suspensions, their way of spreading in the fluid is
expected to change. By analogy with the Stokes-Einstein equation, in which the diffusion
coefficient depends on the inverse of particle diameter (D ∼ a−1), Miyazima et al. (1987)
suggested that the diffusion coefficient depends on the inverse cluster size s in the form
D(s) ∼ sγ, where γ is the coefficient that marks the degree of homogeneity of the kernel
on the Smoluchowski equation (Eq. 6). The result for the diffusion coefficient γ = −1
is considered to be strictly valid for spherical particles that not interact hydrodynamically
among them. However, in the case of an anisotropic system, as is the case of chain aggregates,
the diffusion coefficient varies due to the hydrodynamic interaction in the direction parallel
and perpendicular to the axis of the chain, as follows (Doi & Edwards (1986)):

D� =
kBT

2πηa
ln s

s
(26)

D⊥ = D�/2 (27)

This result is based assuming point particles, but similar expressions are obtained by
modelling the aggregates in the form of cylinders of length L and diameter d = 2a.
Tirado & García (1979; 1980) provide diffusion coefficients for this objects in the directions
perpendicular, parallel and rotational to the axis of the chains (D�, D⊥, Dr).
By using mesaurements of Dynamic Light Scattering (DLS), an effective diffusion coefficient,
Deff, of the aggregates can be extracted (Koppel (1972)). This effective coefficient is related to
the others mentioned above by means of the relationship:

Deff = D⊥ +
L2

12
Dr (28)

which is correct if qL >> 1 where q is the scattering wave vector defined as: q =
4π/λl sin(θ/2), λl is the wave length of the laser over the suspension and θ is the scattering
angle.

2.3.4 Cluster sedimentation
A particularly important effect is the sedimentation of the clusters or aggregates. It is essential,
when a colloidal system is studied, determine the position of the aggregates from the wall, as
well as knowing what the deposition rate by gravity is and when the equilibrium in a given
layer of fluid is reached. The velocity vc experienced by a cluster composed of N identical
spherical particles of radius a and mass M falling by gravity in a fluid without the presence of
walls is (González et al. (2004)):

vc =
MgN

γ0

(
1 − ρ

ρp

)
=

MgDN
kBT

(
1 − ρ

ρp

)
where g is the value of the gravity acceleration, ρ is the fluid density, ρp is the density of
the particles, γ0 is t the drag coefficient and D the diffusion coefficient. If we have only one
spheric particle, the last equation yields the classic result for the sedimentation velocity:

vp =
2a2gΔρ

9η
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with Δρ = ρp − ρ. We can define the Péclet number as the ratio between the sedimentation
time ts and diffusion td using a fixed distance, for instance, 2a:

Pe ≡ td
ts

=
Mga
kBT

(
1 − ρ

ρp

)
=

4πa4gΔρ

3kBT
(29)

Then, the vertical distance travelled by gravity for a cluster in a time equal to that a particle
spread a distance equal to the diameter of the particle d is dc = vctd = Pe Nd.
The above expressions are satisfied when sedimentation occurs in an unconfined fluid. If there
is a bottom wall, then it provides a spatial distribution of particles ρ which depends on the
relative height with respect to the bottom wall. If the system is in an equilibrium state and
with low concentration of particles, we can use the Boltzmann density profile, which measures
the balance on the thermal forces and gravity:

ln ρ(z) ∝ − z
LG

(30)

where LG ∼ kBT/Mg. As mentioned, this density profile is valid when the interactions
between the colloidal particles are neglected. However, experimental situations can be much
more complicated, resulting in deviations from this profile, so theoretical research is still in
development about this question (Chen & Ma (2006); Schmidt et al. (2004)). In fact, it has been
discovered experimentally that the influence of the electric charge of silica nanoparticles in a
suspension of ethanol may drastically change the shape of the density profile (Rasa & Philipse
(2004)). We will here assume the expression 30 to be correct, so that the average height zm of
a particle of radius a, between two walls separated by a distance h, can be determined by the
Boltzmann profile as Faucheux & Libchaber (1994) showed:

PB(z) =
1
L

(
e−z/L

e−a/L − e(a−h)/L

)
(31)

where z is the position of the particle between the two walls, where the bottom wall is at
z = 0 and the top is located at z = h, L is the characteristic Boltzmann length defined as
L ≡ kBT (gΔM)−1 where ΔM ≡ (4/3)πa3(ρp − ρ).
Therefore, the mean distance zm can be calculated:

zm =
∫ h−a

a
zPB(z)dz = (32)

=
e−a/L[aL + L2]− e(a−h)/L[(h − a)L + L2]

L[e−a/L − e(a−h)/L)

With that expression and the equations for the diffusion coefficient near a wall (Eqs. 20 to
25) we can estimate the effective diffusion coefficient of a sedimented particle. However,
when we have a set of particles, clusters or aggregates near the walls of the enclosure, the
evaluation of hydrodynamic effects on the diffusion coefficient and their dynamics is not an
easy problem to evaluate theoretically or experimentally. In fact, this problem is very topical,
for example, focused on polymer science (Hernández-Ortiz et al. (2006)) or more specifically,
in the case of biopolymers, such as DNA strands, moving by low flows in confined enclosures
(Jendrejack et al. (2003)). Kutthe (2003) performed Stokestian dynamics simulations (SD) of
chains, clusters and aggregates in various situations in which hydrodynamic interactions
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are not negligible. Specifically, they calculated the friction coefficient γN depending on N
(number of particles) for linear chains located at a distance z of the wall and applying a
transverse velocity Vx = 0.08 diameters per second. The friction coefficient γN , to reach a
velocity Vx in the transverse direction was obtained as:

γN =
Fx

3πηdVx

where Fx is the force over the chain and d the diameter of the particle. Then, they obtain that,
far away from the wall, γ30 ∼ 6 for a chain formed by 30 particles. But, near enough from the
wall, the friction coefficient grows to a value γ30 ∼ 200. Recently, Paddinga & Briels (2010)
showed simulation results for translational and rotational friction components of a colloidal
rod near to a planar hard wall. They obtained a enhancement friction tensor components
because of the hydrodynamic interactions between the rod and the wall.
In any case, when we are thinking on one spherical Brownian particle, we can estimate
the diffusion coefficient using the Boltzmann profile by calculating the mean position of
the particle using Eq.32. Then, if we can calculate the experimental diffusion coefficient
when sedimentation affects to the particles, we can employ the following expression
(Domínguez-García, Pastor, Melle & Rubio (2009); Faucheux & Libchaber (1994)):

Dδ
�
=

∫ L

0
PB(z)

[∫ z+δ(z,η)

z−δ(z,η)
D�(z′, η)

PB(z′)
NB(z′, η)

dz′
]

dz

where PB(z) is the Boltzmann probability distribution, NB(z) is the normalization of that
function, D�(z′, η) is the corrected diffusion coefficient of the particle for the motion parallel
to the wall. This expression introduces a correction because of the vertical movement:
during each time window of span τ, the particle typically explores a region of size 2δ with
δ(z, η) = 1

2

√
2τD⊥(z, η), where D⊥ is the diffusion coefficient for the motion normal to the

wall. The height of the particle from the bottom, z, is calculated by assuming the Boltzmann
probability distribution.

2.4 Electrostatics
In a colloidal system, there are usually present not only external forces or hydrodynamic
interaction of particles with the fluid, but also electrostatic interactions of various kinds.
Moreover, as we shall see, many of the commercial micro-particles have carboxylic groups
(−COOH) to facilitate their possible use, for example, in biological applications. These groups
provide for electrolytic dissociation, a negative charge on the particle surface, so that we
can see their migration under a constant and uniaxial electric field using the technique of
electrophoresis. Therefore, these groups generate an electrostatic interaction between the
particles.

2.4.1 DLVO theory
DLVO theory (Derjaguin & Landau (1941); Verwey & Overbeek (1948)) is the commonly used
classical theory to explain the phenomena of aggregation and coagulation in colloidal particle
systems without external fields applied. Roughly speaking, the theory considers that the
colloidal particles are subject to two types of electrical forces: repulsive electrostatic forces
due to same-sign charged particles and, on the other hand, Van der Waals forces which are
of attractive nature and appear due to the interaction between the molecules that form the
colloid. According to the intensity relative to each other, the particles will aggregate or repel.
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Thus, the method to control the aggregation is to vary the ionic strength of medium, i.e., the
pH. In most applications in colloids, it is enormously important to control aggregation of
particles, for example, for purification treatments of water.
The situation around a negatively charged colloidal particle is approximately described by
the double layer model. This model is used to display the ionic atmosphere in the vicinity of
the charged colloid and explain how the repulsive electrical forces act. Around the particle,
the negative charge forms a rigid layer of positive ions from the fluid, usually called Stern
layer. This layer is surrounded by the diffuse layer that is formed by positive ions seeking
to approach the colloidal particle and that are rejected by the Stern layer. In the diffuse layer
there is a deficit of negative ions and its concentration increases as we left the colloidal particle.
Therefore, the diffuse layer can be viewed as a positively charged atmosphere surrounding the
colloid.
The two layers, the Stern layer and diffuse layer, form the so-called double layer. Therefore,
the negative particle and its atmosphere produce a positive electrical potential associated with
the solution. The potential has its maximum value on the surface of the particle and gradually
decreases along the diffuse layer. The value of the potential that brings together the Stern
layer and the diffuse layer is known as the Zeta potential, whose interest mainly lies in the
fact that it can be measured. This Zeta potential measurement, is commonly referred as ζ and
measured in mV. The Zeta potential is usually measured using the Laser Doppler Velocimeter
technique. This device applies an electric field of known intensity of the suspension, while
this is illuminated with a laser beam. The device measures the rate at which particles move so
that the Zeta potential, ζ, can be calculated by several equations that relate the Zeta potential
electrophoretic mobility, μe.
In a general way, it is possible to use the following expression, known as the Hückel equation:

μe =
2
3

ε ζ

η
f (κa) (33)

where ε is the dielectric constant of the medium, η its viscosity, a the radius of the particle
and where 1/κ is the width of the double layer, known as the Debye screening length
and where f (κa) is the named Henry function. In the case of 1 < κa < 100, the Zeta
potentials can be calculated by means of some analytic expression of the Henry function
(Otterstedt & Brandreth. (1998)). Summarising, the higher is the Zeta potential, the more
intense will be the Coulombian repulsion between the particles and the lower will be the
influence of the Van der Waals force in the colloid.
The Van der Walls potential, which can provide a strong attractive interaction, is usually
neglected because its influence is limited to very short surface-to-surface distances in the
order of 1 nm. Therefore, the DLVO electrostatic potential between two particles located a
radial distance r one from the other is usually given by the classical expression:

U(r) =
(Z∗e)2

ε

exp (2aκ)

(1 + aκ)2
exp (−κr)

r
(34)

where Z∗ is the effective charge of the particles and σeff = Z∗e/4πa2 is their density of
effective charge. Therefore, in this theory, two spherical like-charged colloidal particles
suffered a purely electrostatic repulsion between them. The colloidal particle can have
carboxylic groups (COOH) attached to their surfaces, creating a layer of negative charge of
length δ in the order of nanometers surrounding the colloidal particles (Shen et al. (2001)).
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The presence of this layer modifies the equation of the double-layer potential (Reiner & Radke
(1993); Shen et al. (2001)):

Udl(s) = 2πε(ψ)2 2
2 + s′/a

exp(−κs′) (35)

where s′ = s − 2δ.

2.4.2 Ornstein-Zernike equation
For calculating the electrostatic potential in a colloidal suspension, we can use the following
methodology. This approach involves using the radial distribution function of the particles,
g(r), knowing that it is related with the interaction energy of two particles in the limit of
infinite dilution by means of the Boltzmann distribution:

lim
n→0

g(r) = e−β U(r) (36)

where n is the particle density and β ≡ 1/kBT. However, for finite concentrations, g(r) is
influenced by the proximity between particles, so we can calculate the mean force potential,
w(r):

w(r) = − 1
β

ln g(r) (37)

But we do not know the relation between w(r) and U(r). Here, is usually defined a total
correlation function h(r) ≡ g(r)− 1 and is used the Ornstein-Zernike (O-Z) equation for two
particles in a two-dimensional fluid:

h(r) = c(r) + n
∫

c(r′)h(
∣∣r′ − r

∣∣)dr′ (38)

The c(r) function is the direct correlation function between two particles. Now, it is necessary
to close the integral equation by linking h(r), c(r) and U(r). For that, one of the following
assumptions is employed:

c(r) =

⎧⎨⎩
−βU(r) MSA
−βU(r) + h(r)− ln g(r) HNC
(1 − eβU)(1 + h(r)) PY

(39)

named Mean Spherical Approximation (MSA), Hypernetted Chain (HNC) and Percus-Yevick
(PY).
In the case of video-microscopy experiments, a more practical methodology is explained by
Behrens & Grier (2001b) for obtaining the electrostatic potential. More explicitly, with the PY
approximation we have:

U(r) = w(r) +
n
β

I(r) = − 1
β
[ln g(r)− nI(r)] , (40)

and with the HC:

U(r) = w(r) +
1
β

ln [1 + nI(r)] = − 1
β

[
ln

(
g(r)

1 + nI(r)

)]
, (41)

In both cases, I(r) is the convolution integral defined as:

I(r) =
∫ [

g(r′)− 1 − nI(r′)
] [

g(
∣∣r′ − r

∣∣)− 1
]

d2r′, (42)

which can be calculated numerically.
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2.4.3 Anomalous effects
In order to understand the interactions in this kind of systems, we have to note that
the standard theory of colloidal interactions, the DLVO theory, fails to explain several
experimental observations. For example, an attractive interaction is observed between the
particles when the electrostatic potential is obtained. This is a effect that has been previously
observed in experiments on suspensions of confined equally-charged microspheres
(Behrens & Grier (2001a;b); Grier & Han (2004); Han & Grier (2003); Larsen & Grier (1997)).
Grier and colleagues listed several experimental observations using suspensions of charged
polystyrene particles with diameters around 0.65 microns at low ionic strength and strong
spatial confinement. They note that such effects appear when a wall of glass or quartz is near
the particles. Studying the g(r) function and its relation to the interaction potential, given by
expression 36, they showed the appearance of a minimum on the potential located at z = 2.5
microns of the wall and a distance between centres to be rmin = 3.5 microns. This attraction
cannot be a Van der Waals interaction, because for this type of particle and with separations
greater than 0.1 micrometres, this force is less than 0.01 kBT (Pailthorpe & Russel (1982)), while
this attractive interaction is about 0.7 kBT.
The same group (Behrens & Grier (2001b)) extended this study using silica particle
suspensions (silicon dioxide, SiO2) of 1.58 microns in diameter, with a high density of 2.2
g/cm3, using a cell of thickness h = 200 μm. In this situation, even though the particles
are deposited at a distance from the bottom edge of the particle to the bottom wall equal
to s = 0.11 μm, no minimum in the interaction energy between pairs appears, being the
interaction purely repulsive, in the classical form of DLVO given by Eq.34. In that work, a
methodology is also provided to estimate the Debye length of the system and the equivalent
load Z∗ through a study of the presence of negative charge quartz wall due to the dissociation
of silanol groups in presence of water (Behrens & Grier (2001a)). However, Han & Grier (2003)
observed the existence of a minimum in the potential when they use polystyrene particles of
0.65 micron and density close to water, 1.05 g/cm3, with a separation between the walls of
h = 1.3 microns. What is more, using silica particles from previous works, they observe a
minimum separation between walls of h = 9 μm.
The physical explanation of this effect is not clear (Grier & Han (2004)), being the
main question how to explain the influence on the separation of the two walls in the
confinement cell. However, some criticism has appeared about this results. For example,
about the employment of a theoretical potential with a DLVO shape. An alternative
is using a Sogami-Ise (SI) potential (Tata & Ise (1998)). Moreover, Tata & Ise (2000)
contend that both the DLVO theory and the SI theory are not designed for situations
in confinement, so interpreting the experimental data using either of these two theories
may be wrong. Controversy on the use of a DLVO-type or SI potentials appears to be
resolved considering that the two configurations represent physical exclusive situations
(Schmitz et al. (2003)). In fact, simulations have been performed to explore the possibility of a
potential hydrodynamic coupling with the bottom wall generated by the attraction between
two particles (Dufresne et al. (2000); Squires & Brenner (2000)). However, the calculated
hydrodynamic effects do not seem to explain the experimental minimum on the potential
(Grier & Han (2004); Han & Grier (2003)). Other authors argue that this kind of studies
should be more rigorous in the analysis of errors when extracting data from the images
(Savin & Doyle (2005; 2007); Savin et al. (2007)) and other authors claim that the effect on
the electrostatic potential may be an artefact (Baumgart et al. (2006)) that occurs because of
a incorrect extraction of the position of the particles (Gyger et al. (2008)).
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Polin et al. (2007) realized that some minimums in the electrostatic potential can be eliminated
by measuring the error on the displacement of the particles. However, this is not a double
implication and other experimental minimums in the potential remain there. In that work,
the authors take into account all the proposed artefacts to date for their measurements,
demonstrating that charged glass surfaces really induce attractions between charged colloidal
spheres. Moreover, Tata et al. (2008) claim that their observations using confocal laser
scanning of millions of charged colloidal particles establish the existence of an attractive
behaviour in the electrostatic potential.
Moreover, other possible electrostatic variations in these systems may appear for several
reasons. For instance, the emergence of a spontaneous macroscopic electric field in
charged colloids (Rasa & Philipse (2004)). Moreover, according to several studies, changes
in the fluid due to, for example, environmental pollution with atmospheric CO2, can be
relatively easy and are not negligible at low concentrations, being able to radically change
the electrical properties on the fluid (Carrique & Ruiz-Reina (2009)). Thus, interactions
related to colloidal stability can produce anomalous effects and significant changes in, for
example, sedimentation kinetics (Buzzaccaro et al. (2008)) or sedimentation-diffusion profiles
(Philipse & Koenderink (2003)). Then, these electrostatic effects can affect the dynamics of
aggregation and influence the mobility of the particles and clusters.

3. Results

Our experimental system is formed by a MRF composed of colloidal dispersions of
superparamagnetic micron-sized particles in water. These particles have a radius of 485 nm
and a density of 1.85 g/cm3, so they sediment to an equilibrium layer on the containing
cell. They are composed by a polymer (PS) with nano-grains of magnetite dispersed into
it, which provide their magnetic properties. The particles are also functionalized with
carboxylic groups, so they have an electrical component, therefore, they repel each other,
avoiding aggregation. This effect is improved by adding sodium dodecyl sulfate (SDS) in
a concentration of 1 gr/l.
The containing cell consists on two quartz windows, one of them with a cavity of 100
μm. The cell with the suspension in it is located in an experimental setup that isolate
thermically the suspension and allows to generate a uniform external magnetic field in
the centre of the cell. The particles and aggregates are observed using video-microscopy
(see details for this experimental setup on (Domínguez-García et al. (2007))). Images of
the fluid are saved on the computer and then analysed for extracting the relevant data
by using our own developed software (Domínguez-García & Rubio (2009)) based on ImageJ
( U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/ (n.d.)). In
Fig.3, we show an example of these microparticles and aggregates observed in our system.
The zeta potential of these particles is about −110 to −60 mV for a pH about 6 - 7. Therefore,
the electrical content of the particles is relatively high and it is only neglected in comparison
with the energy provided by the external magnetic field. However, the colloidal stability of
these suspensions is not being controlled and it may have an effect on the dynamics of the
clusters, specially when no magnetic field is applied. In any case, as we will see, even when a
magnetic field is applied, it is observed a disagreement between theoretical aggregation times
and experimental ones.
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3.1 Control parameters
We have already defined some important parameters as the Péclet number, Eq.29, and
the Reynolds number Eq.19. However, in our system we need to define some external
parameters related with the concentration of particles and the intensity of the magnetic field.
The concentration of volume of particles in the suspension, φ, is defined as the fraction of
volume occupied by the spheres relative to the total volume of the suspension. In a quasi-2D
video-microscopy system is useful to take into account the surface concentration φ2D .
For measuring the influence of the magnetic interaction we used the λ parameter, defined as:

λ ≡ Wm

kBT
=

μsμ0m2

16πa3kBT
(43)

as the ratio of Wm = Ud
ij(r = 2a, α = 0), i.e., the magnetic energy, and the thermal

fluctuations kBT. Here, μs is the relative magnetic permeability of the solvent, μ0 the magnetic
permeability of vacuum and m the magnetic moment. The parameters λ y φ2D allow to define
a couple of characteristic lengths. First, we define a distance R1 for which the energy of dipolar
interaction is equal to thermal fluctuations:

R1 ≡ 2aλ1/3 (44)

Finally, we define a mean distance between particles:

R0 ≡ √
πa φ−1/2

2D (45)

The comparative between these two quantities allows to distinguish between different
aggregation regimes. When, R1 < R0, the thermal fluctuations prevail over the magnetic
interactions so diffusion is the main aggregation process. If R1 > R0, the aggregation of the
particles occurs mainly because of the applied magnetic field.

3.2 Aggregation and disaggregation
Studies about the dynamics of the irreversible aggregation of clusters under unidirectional
constant magnetic fields have used a collection of experimental systems. For example,
electro-rheological fluids (Fraden et al. (1989)), magnetic holes (non-magnetic particles
in a ferrofluid) (Cernak et al. (2004); Helgesen et al. (1990; 1988); Skjeltorp (1983)),
and magneto-rheological fluids and magnetic particles (Bacri et al. (1993); Bossis et al.
(1990); Cernak (1994); Cernak et al. (1991); Fermigier & Gast (1992); Melle et al. (2001);
Promislow et al. (1994)).
These studies focus their efforts in calculating the kinetic exponent z obtaining different
values ranging z ∼ 0.4 − 0.7. The different methodologies employed can be the
origin of these dispersed values. However, more recent studies (Domínguez-García et al.
(2007); Martínez-Pedrero et al. (2007)) suggest that this value is approximately z ∼
0.6 − 0.7 in accordance with experimental values reported for aggregation of dielectric
colloids z ∼ 0.6 (Fraden et al. (1989)) and with recent simulations of aggregation of
superparamagnetic particles (Andreu et al. (2011)). Regarding hydrodynamics interactions
Miguel & Pastor-Satorras (1999) proposed and effective expression for explaining the
dispersed value of the kinetic exponent based on logarithmic corrections in the diffusion
coefficient (Eqs. 26 and 27):

S(t) ∼ (t ln [S(t)])ξ , (46)
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Fig. 3. Superparamagnetic microparticles observed when no external magnetic field is
applied (Left) and when it is applied (Right).

where the exponent ξ is an exponent that depends on the dimensionality of the system, so if
d ≥ 2, ξ = 1/2. Using Monte Carlo simulations they obtain that ξ � 0.51, and therefore that z
is z � 0.61.
In the case of our experiments, we have experimentally obtained that the z exponent in
aggregation is contained in the range of 0.43 − 0.67 (Domínguez-García et al. (2007)) with
an average value of z ∼ 0.57 ± 0.03. These experimental values do not depend on the
amplitude of the magnetic field nor on the concentration of particles, but they seem to
depend on the ratio R1/R0, which is a sign of the more important regime of aggregation.
The dependency on this ratio also appears when the morphology of the chains is studied
(Domínguez-García, Melle & Rubio (2009); Domínguez-García & Rubio (2010)). Besides, the
scaling behaviour given by Eq.7 is experimentally observed and checked. We have compared
our experimental results with Brownian dynamics simulations based on a simple model
which only included dipolar interaction between the particles, hard-sphere repulsion and
Brownian diffusion, neglecting inertial terms and effects related with sedimentation or
electrostatics. The results of these simulations agree with the theoretical prediction, whereas
the experimental aggregation time, tag, appears to be much longer than expected (Cernak et al.
(2004); Domínguez-García et al. (2007)), about three orders of magnitude of difference. The
formation of dimers (two-particles aggregates) in the experiments lapses t ∼ 102 seconds, but
Brownian simulations show that this lapse of time is about t ∼ 0.1 s. This last value can be
easily obtained by assuming that the equation for the movement between two particles with
dipolar magnetic interaction is:

Mr̈ + γ0ṙ + 3μμ0m2r−4π−1 = 0

where M is the mass of the particles. Because of Reynolds number (Eq.19) is very low, we
neglect the inertial term on this equation. If the particles are separated a initial distance d = R0
we can obtain that:

tag ∼= 32πγ0a5

15μsμ0m2 φ−5/2
2D

If we express this equation in function of the λ parameter 43 and of the diffusion coefficient
given by the Stokes-Einstein equation 13:

tag ∼= 2a2

15
1

λD
φ−5/2

2D (47)
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For example, the aggregation processes for S(t) in the work of Promislow et al. (1994), show
an aggregation time of 200 seconds. The paramagnetic particles used in that work have a
diameter of 0.6 μm and a 27% of magnetite content. Using the Stokes-Einstein expression,
D = 0.86 μm/s2 is obtained, supposing that these particles do not sediment. Using φ = 0.0012
and λ = 8.6, we can obtain that tag ∼ 122 seconds, in the order of their experimental result.
In the case of our experiments, we obtain the same values using Eq.47 that using Brownian
simulations.
These discrepancies may be related with hydrodynamic interactions which should affect
the diffusion of the particles. From Eq.47, we see that some variation on the diffusion
coefficient of the particles can modify the expected aggregation time for two particles. For
testing that, we made some microrheology measurements using different types of isolated
particles according to the theory of sedimentation and with the corrections on the values
of the diffusion coefficient. The experimental values agree very well with the theoretical
ones calculated from the expression 2.3.4 (Domínguez-García, Pastor, Melle & Rubio (2009))
but they imply a reduction on the diffusion coefficient a factor of three as a maximum, no
being sufficient for explaining the discrepancy in the aggregation times.

Fig. 4. Experiments of aggregation and disaggregation. The experimental process of
aggregation (a) begins with λ = 1718, φ2D = 0.088 while disaggregation is shown in (b).
Brownian dynamics simulations results with λ = 100, φ2D = 0.03 are shown for aggregation
(c) and disaggregation (d). Data from Refs.(Domínguez-García et al. (2007; 2011))
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For completing this study, we also have shown results of disaggregation, that is, the process
that occurs when the external magnetic field is switched off and the clusters vanish. For
this process we study the kinetics in the same way that in aggregation, by searching power
laws behaviours and calculating the kinetic exponents z and z′ (Domínguez-García et al.
(2011)). We have also developed Brownian dynamics simulations to be compared with the
experiments. The Fig.4 summarizes some of our results in aggregation and disaggregation.
The experimental kinetic exponents during disaggregation range from z = 0.44 to 1.12 and
z′ = 0.27 to 0.67, while simulations give very regular values, with z and z′ ∼ 1. Then,
the kinetic exponents do not agree, being also the process of disaggregation much faster in
simulations. From these results, we conclude that remarkable differences exist between a
simple theoretical model and the interactions in our experimental setup, differences that are
specially important when the influence of the applied magnetic field is removed.
In all these experiments some data has been collected before any external field is applied.
That allows us to study the microstructure of the suspensions by calculating the electrostatics
potential using the methods previously explained. The inversion of the O-Z equation reveals
an attractive well in the potential with a value in its minimum in the order of −0.2 kBT,
similar to other observations of attractive interactions of sedimented particles in confinement
situations. Moreover, these values of the minimum in the potential seems to depend of
the concentration of particles (Domínguez-García, Pastor, Melle & Rubio (2009)), something
which is expected, if it is related in some way with the electrical charge contained in the
suspension.

Fig. 5. Left: g(r) function, Right: Electrostatic potential calculated by inverting the O-Z
equation (all the approximations give the same result) Inset: a detail for U(r) in the region of
the minimum. Number density n = 0.0009

As a confirmation of these results, we show here a calculation of the electrostatic potential
using a long set of images of charged superparamagnetic microparticles spreading in the
experimental system described above. We have obtained images of the suspension during
more than an hour, with a temporal lapse between images of 0.3 seconds. This data allow
us to produce a very defined graph for the pair correlation function, showed in the Fig.5. In
the right side of the Fig.5, we plot the electrostatic potential and in its inset we can see that
the minimum has a value of about −0.1 kBT, confirming the previous results obtained in this
experimental setup.
However, this result may be an effect of an imagining artefact. About that question, some of
the studies which use particle tracking only apply some filters to the images for detecting
brightness points and then extracting the position of the particles. Our image analysis
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software (Domínguez-García & Rubio (2009)) employs open-sourced algorithms for detecting
the centres of mass of the particles by detecting the borders of each object and then obtaining
its geometrical properties. As an example, we have tried to evaluate how this border detection
can have an influence on the result of the electrostatic potential. A measured apparent
displacement Δ(r) = r′ − r should affect to the radial distribution function in the following
form: g(r) = g′(r + Δ(r))(1 + dΔ(r)/dr) (Polin et al. (2007)). From that expression, the
variation in the electrostatic potential is:

βU′(r)− βU(r) ∼= −β
dU(r)

dr
Δ(r) +

dΔ(r)
dr

(48)

For obtaining Δ(r) we have extracted a typical particle image and we have composed some
set of images which consist on separating the two particles a known distance (r) in pixels.
Next, we apply our methods of image analysis for obtaining the position of those particles
and calculate the distances (r′). Then, the apparent displacement, Δ(r) = r′ − r, is observed
to grow when the particles are very near. In Fig.6, we display the results of our calculations
on the possible artefact in the analysis of the position of the particles by image binarization
and binary watershed, a method for automatically separating particles that are in contact.
The figure reveals that the correction on the electrostatic potential for this cause is basically
negligible, because the correction in the potential is zero for distances r > 1.2 μm. In the inset
of the figure we can see some of the images we have employed for this calculation, showing
the detected border of the particles among the images themselves.

Fig. 6. Estimation of a possible artefact in the analysis of the position of the particles. In the
inset we have included some examples of the images used for this calculation.

In any case, the possibility of an artifact can be the cause of these observations in the
electrostatic potential cannot be descarted. However, the direct or indirect presence and
influence of these attractive wells has been detected in many other situations in these
experiments. For example, the attractive interaction disappears when we added a salt,
in our case KCl, to the suspensions, confirming the electrostatic nature of the phenomena
(Domínguez-García, Pastor, Melle & Rubio (2009)). In disaggregation it is observed how the
particles move inside the chains without leaving them (Domínguez-García et al. (2011)). The
lapse of time that the particles are in this situation depends on the initial morphology
of the aggregates, something which has been observed to depend on the ratio R1/R0
(Domínguez-García, Melle & Rubio (2009); Domínguez-García & Rubio (2010)). Then, this
effective lapse of time depends of how many particles are located near the other in a short
distance. In that situation, the attractive interaction should play a role in disaggregation, as it
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seems to be. Indeed, this “detaining” effect of the particles inside the clusters is not observed
in experiments with added salt.
What is more, we have also observed that the kinetic exponents during aggregation are
different and slower if we add salt to the suspension (Domínguez-García et al. (2011)). This
last effect may be related with an unexpected interaction of the particles with the charged
quartz bottom wall by means of a a spontaneous macroscopic electric field. When the particles
and clusters have no electrical component, they should be highly sedimented at the bottom of
the quartz cell and the resistance to their the movement should be increased (Kutthe (2003)),
generating that the kinetic exponents reduce their value.

4. Conclusions

In this chapter, we have reviewed the main interactions, with focus on hydrodynamics and
from a experimental point of view, that can be important in a confined colloidal system at low
concentration of microparticles. We have used charged superparamagnetic microparticles
dispersed in water in low-confinement conditions by means of a glass cell for the study
of irreversible field-induced aggregation and disaggregation, as well as the microstructure
of the suspension. Regarding aggregation characteristic times and basic behaviour on the
disaggregation of the particles, we have observed significant discrepancies between the
experimental results and the theory. Morover, anomalous effects in the electrostatic behaviour
have been observed, showing that, in this kind of systems, the electro-hydrodynamics
interactions are not well understood at present and deserve more theoretical and experimental
investigations.
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1. Introduction 
The electrical explosion of conductors, such as metallic foils and wires, refers to rapid 
changes of physical states when the large pulsed current (tens or hundreds of kA or more, 
the current density j106 A/cm2) flows through the conductors in very short time(sub 
microsecond or several microseconds), which may produce and radiate shock waves, 
electrical magnetic waves, heat and so on. There are many applications using some 
characteristics of the electrical explosion of conductors. 
The Techniques of metallic foil electrical explosion had been developed since 1961, which 
was first put forward by Keller, Penning[1] and Guenther et al[2]. However, it develops 
continually until now because of its wide uses in material science, such as preparation of 
nanometer materials and plating of materials[3,4], shock wave physics[5-7] , high energy 
density physics[8] and so on. Especially the techniques of metallic foil electrically 
exploding driving highvelocity flyers, are widely used to research the dynamics of 
materials, hypervelocity impact phenomena and initiation of explosives in weapon safety 
and reliability. Therefore, in this chapter we focus on the physical process of metallic foil 
explosion and the techniques of metallic foil electrically exploding driving highvelocity 
flyers. Here the explosion of metallic foils are caused by the large current flowing through 
in sub microsecond or 1～2 microsecond or less. During the whole physical process, not 
only does the temperature rising, melting, vaporizing and plasma forming caused by 
instantaneously large current, but also the electrical magnetic force exists and acts on. 
Because the whole process is confined by rigid face and barrel, and the time is very short 
of microsecond or sub microsecond or less, and the phynomena is similar to the explosion 
of explosives, we call the process electrical explosion of metallic foils. This process is a 
typically hydrodynamic phenomena. It is also a magnetohydrodynamic process because 
of the exist and action of the magnetic force caused by large current and self-induction 
magnetic field. 
Magnetically driven quasi-isentropic compression is an relatively new topic, which was 
developed in 1972[9]. At that time the technique of magnetically driven quasi-isentropic 
compression was used to produce high pressure and compress the cylindrical sample 
materials. Until 2000, the planar loading technique of magnetically driven quasi-isentropic 
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compression was firstly presented by J.R. Asay at Sandia National Laboratory[10]. In last 
decade, this planar loading technique had being developed fastly and accepted by many 
researchers in the world, such as France[11], United Kingdom[12],and China[13]. As J.R. Asay 
said, it will be a new experimental technique widely used in shock dynamics, astrophysics, 
high energy density physics, material science and so on. The process of magnetically driven 
quasi-isentropic compression is typical magnetodynamics[14], which refers to dynamic 
compression, magnetic field diffusion, heat conduction and so on. 
As described above, the electrical explosion of metallic foil and magnetically driven quasi-
isentropic compression is typically magnetohydrodynamic problem. Although it develops 
fastly and maybe many difficulties and problems exist in our work, we present our 
important and summary understanding and results to everyone in experiments and 
simulations of electrical explosion of metallic foil and magnetically driven quasi-isentropic 
compression in last decade. 
In the following discussions, more attentions are paid to the physical process, the 
experimental techniques and simulation of electrical explosion of metallic foil and 
magnetically driven quasi-isentropic compression.  

2. Physical process of metallic foil electrical explosion and magnetically 
driven quasi-isentropic compression 
2.1 Metallic foil electrical explosion 
Here we introduce the model of metallic foil electrically exploding driving highvelocity 
flyers to describe the physical process of electrical explosion of metallic foil shown in Fig.1. 
A large pulsed current is released to the metallic foil of the circuit, which is produced by a 
typically pulsed power generator. The circuit can be described by R-C-L electrical circuit 
equations[15]. During the circuit, the metallic foil is with larger resistance than that of other 
part, so the energy is mainly absorbed by the metallic foil, and then the physical states of 
metallic foil change with time. Fig.2 shows the typical current and voltage histories between 
metallic aluminum foil during the discharging process of pulsed power generator.  
 

 
Fig. 1. The model of metallic foil electrically exploding driving highvelocity flyers. 
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Fig. 2. The typically discharging current and voltage histories between bridge Aluminum 
foil. 

According to the density changing extent of metallic foil when the first pulsed current flows 
through it, the whole process of electrical explosion of metallic foil can be classified to two 
stages. The initial stage includes the heating stage , the melting stage and the heating stage 
of liquid metal before vaporizing. During this process, the density of metallic foil changes 
relatively slow. The second stage includes the vaporizing stage and the following plasma 
forming. The typical feature of electrical explosion of metallic foil is that the foil expands 
rapidly and violently, and that the resistance increases to be two or more orders than that of 
initial time (R/R0～100). The resistance increases to be maximum when the state of metallic 
foil is at the vaporizing stage. During this stage, the voltage of between foil also increases to 
be maximum, and then the breakdown occurs and the plamas is forming. The inflection 
point of the discharging current shown in Fig.2 exhibits the feature.  
At the initial satge, the expansion of metallic foil is not obvious, and the change of physical 
states can be described with one thermodynamic variable T (temperature) or specific 
enthalpy. The energy loss of the interaction between the foil and the ambient medium can be 
neglected when there is no surface voltaic arcs. Therefore, some assumptions can be used to 
simplify the problem. We can think that the heating of the metallic foil is uniform and the 
instability, heat conduction and skin effect can not be considered at initial stage. For this 
stage, the physical states of metallic foil vary from solid to liquid, and the model of melting 
phase transition can be used to described it well[16]. 
For the second stage, the physical states varies from liquid to gas, and then from gas to 
plasma. There are several vaporizing mechanisms to describe this transition, such as surface 
evaporation and whole boil[16]. The rapid vaporizing of liquid metal make its resistance 
increases violently, and the current decreases correspondingly. At this time, the induction 
voltage between bridge foil increases fastly. If the induction voltage can make the metallic 
vapor breakdown and the plasma is formed, the circuit is conducted again. Of course, the 
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breakdown of metallic vapor needs some time, which is called relaxation time as shown in 
Fig.3. For different charging voltages, the relaxation time varies, which can be seen from the 
experimental current hostories in Fig.3. 
 

 
Fig. 3. The breakdown relaxation time shown in the discharging current histories at different 
charging voltage for the pulsed power generator. 

One important application of the electrical explosion of metallic foil is to launch 
highvelocity flyers with the rapid expansion of tha gas and plasma from electrical 
explosion of metallic foil. Some metallic materials are with good conductivity and 
explosion property, such as gold, silver, copper, aluminum and so on. The experimental 
results[17] show that the aluminum foil is the best material for the application of metallic 
foil electrically exploding driven highvelocity flyers. There are many models used to 
describe the process, such as eletrical Gurney model[18], Schmidt model[19] and one 
dimensional magnetohydrodynamic model[20]. The electrical Gurney model and Schmidt 
model are two empirical models which are derived from energy conservation equation 
based on some assumptions. For a specific electrical parameters of the circuit of some 
apparatus, the electrical Gurney model can be used to predict the final velocity of the 
flyers when the Gurney parameters are determined based on some experimental results. 
And the Schmidt model can be used to predict the velocity history of the flyers because 
the Gurney energy part is substituted with an energy part with the function of time, 
which is depended on the measured current and voltage histories between bridge foil to 
correct the specific power coefficient. These two models can’t reflect other physical 
variables of electrical explosion of metallic foil except the velocity of the flyer. Therefore, a 
more complex model is put forward based on magnetohydrodynamics, which considers 
heat conduction, magnetic pressure and electrical power. The magnetohydrodynamic 
model can well reflect the physical process of electrical explosion of metallic foil. The 
equations are given below[16,20]. 
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Where, －symmetric exponent（for metallic wire or cylindrical foil ＝2，and for planar 
foil ＝1）; /q＝x1-v／x; q－Lagrange mass coordinate;B－transverse component of 
magnetic field;E－axial component of electrical field; j－current density; QV－specific power 
of Joule heating; p－artificial viscosity coefficient；u－transverse moving 
velocity；p－pressure;－internal energy; v－unit volume; －conductivity. 
For this apparatus, the discharging ciruit is a typical RCL circuit, which can be expressed by 
equation（2）below.  
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In the equation (2), when the time t=0, the primary current and voltage I（0）=0 and Uc(0)= 
U0, C0 and U0 are the capacitance and charging voltage of capacitor or capacitor bank, L0 and 
R0 are the inductance and efficient resistance of circuit, Ufoil is the voltage between the ends 
of metallic foil, which is related with the length lfoil of metallic foil and the magetic field of 
the space around the foil. the dynamic inductance Lfoil can be obtained by equation (3). 

 '
0 0 0( ) ( / )foil foilL t k l b x X      (3) 

Where 0 is the vacuum magnetic permeability, k is a coefficient related with the length l 
and width b of metallic foil. x is the expanding displacement of metallic foil.  

2.2 Magnetically driven quasi-isentropic compression 
The concept of magnetically driven quasi-isentropic compression is illustrated in Fig.4. A 
direct short between the anode and cathode produces a planar magnetic field between the 
conductors when a pulsed current flows through the electrodes over a time scale of 300～
800ns. The interaction between the current (density J) and the induction magnetic field  
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Fig. 4. The principle diagram of magnetically driven quasi-isentropic compression. 

B produces the magnetic pressure ( J B
 

) proportional to the square of the field. The force is 
loaded to the internal surface that the current flows through. The loading pressure wave is a 
ramp wave, which is a continuous wave. Compared with the shock wave, the increment of 
temperature and entropy is very lower. However, because of the effects of viscosity and 
plastic work, the sample can’t turn back to the original state after the loading wave. That is 
to say, in solids the longitudinal stress differs from the hydrostatic pressure because of 
resolved shear stresses that produce an entropy increase from the irreversible work done by 
deviator[21, 22]. For this reason, the ramp wave loading process is usually assumed to be 
quasi-isentropic compression. Besides the loading force is magnetic pressure, it is called 
magnetically driven quasi-isentropic compression. 
In order to produce high pressure, the amplitude of the current is ususally up to several 
megamperes or tens of megamperes. Because of the effects of Joule heating and magnetic 
field diffusion, the physical states of the loading surface will change from solid to liquid, 
and to gas and plasma. And these changes will propagate along the thickness direction of 
the electrodes originated from the loading surface. These phenomena are typically 
magnetohydrodynamic problems. In order to describe the physical process, the equation of 
magnetic field diffusion is considered besides the equations of mass, momentum and 
energy. The magnetohydrodynamic equations are presented below. 
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Where m is mass density of electrodes, u is velocity, J is current density, B is magnetic field, 
p is pressure, q is artificial viscosity pressure, e is specific internal energy,  is electrical 
conductivity of electrodes and  is thermal conducitivity. 
Similar to the technique of electrical explosion of metallic foil, the large current is also 
produced by some pulsed power generators, for example, the ZR facility at Sandia National 
Laboratory can produce a pulsed current with peak value from 16 MA to 26 MA and rising 
time from 600 ns to 100 ns[23]. In the following part, we will introduce the techniques of 
magnetically driven quasi-isentropic compression based on the pulsed power generators 
developed by ourselves. 

3. Techniques of metallic foil electrically exploding driving highvelocity flyers 
and magnetically driven quasi-isentropic compression 
The techniques of metallic foil electrically exploding driving highvelocity flyers and 
magnetically driven quasi-isentropic compression have been widely used to research the 
dynamic properties of  materials and highvelocity impact phenomena in the conditions of 
shock and shockless(quasi-isentropic or ramp wave) loading. By means of these two 
techniques, we can know the physical, mechnical and thermodynamic properties of 
materials over different state area (phase space), such as Hugoniot and off-Hugoniot states. 

3.1 Metallic foil electrically exploding driving highvelocity flyers[24,25,26] 

As descibed above, the high pressure gas and plasma are used to launch highvelovity flyer 
plates, which are produced from the electrical explosion of metallic foil. The working 
principle diagram of the metallic foil electrically exploding driving highvelocity flyers is 
presented in Fig.5. Usually we choose the pure aluminum foil as the explosion material 
because of its good electrical conductivity and explosion property. The flyers may be 
polyester films, such as Mylar or Kapton, or complex ones consisted of polyester film and 
metallic foil. The material of barrel for accelerating the flyers may be metals or non-polyester 
films, such as Mylar or Kapton, or complex ones consisted of polyester film and metallic foil. 
The material of barrel for accelerating the flyers may be metals or non-metals, such as  
 

 
Fig. 5. The diagram of working principle of metallic foil electrically exploding driving flyer. 
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ceramics, steel or acryl glass. The base plate is used to confined the high pressure gas and 
plasma and reflect them to opposite direction to propel the flyers. The base plate also 
insulates the anode from the cathode transimission lines. So the material of base plate is 
non-metal and the ceramics is a good one. 
The whole working process is that the large current flows through the metallic foil instantly 
and the metallic foil goes through from solid, to liquid, gas and plasma, and then the high 
pressure gases and plasmas expand to some direction to drive the polyester Mylar flyer to 
high velocity and impacts the targets.  
Based on low inductance technologies of pulsed storaged energy capacitor, detonator switch 
and parallel plate transmission lines with solid films insulation, two sets of experimental 
apparatuses with storaged energy of 14.4 kJ and 40 kJ were developed for launching 
hypervelocity flyer. The first apparatus is only consisted of one storaged energy pulsed 
capcitor with capacitance of 32 F, inductance of 30 nH and rated voltage of 30 kV. The 
parallel plate transmission lines and solid insulation films are used, which are with very low 
inducatnce. The thickness of insulation films is no more than 1 mm, which is composed of 
several or ten pieces of Mylar films with thichness of 0.1 mm. The second apparatus is 
composed of two capacitors with capacitance of 16 F and rated voltage of 50 kV in parallel. 
For two apparatuses, the detonator switch is used, which is with low inductance of about 7 
nH and easy to connected with the parallel plate transmission lines.  
Fig.6 shows the diagram of the detonator switch. The detonator is exploded and the 
explosion products make the aluminum ring form metallic jet and breakdown the insulation 
films between anode and negative electrodes, and then the storaged energy is discharged to 
the load. 
 

 
Fig. 6. Diagram of detonator switch 
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Fig. 7 shows the photoes of two apparatuses and Table 1 gives the electrical parameters of 
these two apparatuses. 
 
 

 
(a) 

 
 

 
(b) 

 

Fig. 7. Experimental apparatuses of metallic foil electrically exploding driving flyers. The 
apparatus with energy of 14.4 kJ (a) and the apparatus with energy of 40 kJ(b). 
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setup C/F U0/kV E/kJ R/m L/nH T/s (dI/dt)t=0 
/(A/s) Remarks 

1 32 30 14.4 14 40 7.1 7.5×1011 Single 
capacitor 

2 32 50 40 10 36 6.75 8.4×1011 
Two 

capacitors in 
parallel 

Table 1. Parameter Values of our two apparatuses  

Table 2 gives the performance parameters of our two apparatuses of metallic foil electrically 
exploding driving flyers. 
 

Parameters Setup 
 1 2 
Flyer—Mylar (6～20)mm×(0.1～0.2)mm (10～30)mm×(0.1～0.3)mm 
Foil—Aluminum (6～20)mm×(6～20)mm×0.028 

mm 
(10～30)mm×(10～30)mm×0.05 
mm 

Barrel—PMMA (6～20)mm×(4～15 )mm (10～30)mm×(4～15 )mm 
Flyer velocity 3～10km/s 3～15km/s 
Flyer Simultaneity at 
Impact 

25 ns 35 ns 

Table 2. The performance parameters of our two apparatuses  

The typical velocity histories of the flyers are shown in Fig.8, which are measured by laser 
interferometer, such as VISAR (velocity interferometer system for any reflectors)[27] or 
DISAR(all fibers displace interferometer system for any reflectors)[28]. 
 

 
(a) 
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(b) 

Fig. 8. The experimental results of the velocity of the flyer in different conditions. The 
velocities of the flyers vary from charging voltages (a) and the calculated and measured 
velocities of the flyers (b) 

As described above, the apparatus of metallic foil electrically exploding driving flyers is a 
good plane wave generator for shock wave physics experiments. In the last part, we will 
introduce some important applications of this tool. 

3.2 Magnetically driven quasi-isentropic compression 
The techinques to realize magnetically driven quasi-isentropic compression are based on all 
kinds of pulsed power generators, such as ZR, Veloce[29], Saturn[30] facilities. As shown in 
Fig.9, Current J


 flowing at the anode and cathode surfaces induces a magnetic field B


 in  

 

 
Fig. 9. Experimental configuration of samples for magnetically driven quasi-isentropic 
compression 
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the gap. The resulting J B
 

 Lorentz force is transferred to the electrode material, and a 
ramp stress wave propagates into the samples. The stress normal to the inside surfaces of 
electrods is 2

0(1 2)BP J , where J is the current per unit width. Two identical samples with 
a difference in thickness of h, are compressed by identical B-force and their particle velocity 
profiles u(t) are measured by DISAR or VISAR. 
An inverse analysis technique, i.e, the backward integration technique using difference 
calculation is developed to extract a compression isentrope from free-surface or window-
interface velocity profiles[31]. Different from Lagrangian wave analysis, inverse analysis can 
account for ramp-wave interactions that arise at free surfaces or window interfaces. In this 
method, the profiles of velocity and density are specified as an initial condition at the 
Lagrangian position of the measurement, then the equations of motion from equation (5) 
through equation (7) are integrated in the negative spatial direction to a position inside the 
material that is free of interaction effects during the time of interest. Assuming some 
parametric form shown in equation (8) for the mechanical isentrope of the material such as 
Murnaghan euqation or others, the parameter values are found by iteratively performing 
backward intergration on data from multiple thickness of the sample while minimizing the 
deviation between the results at a common position. 

 0( d , ) ( . ) [ ( , d ) ( , d )]d /(2d )h h t h t u h t t u h t t h t         (5) 

 ( d , ) [ ( d ), )]h h t F h h t     (6) 

 ( d , ) ( , ) [ ( , d ) ( , d )]d /(2d )u h h t u h t h t t h t t h t        (7) 
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B

s s
V

B V B
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 (8) 

In order to do quasi-isentropic compression experiments, a compact capacitor bank facility 
CQ-1.5[13] was developed by us, which can produce a pulsed current with peak value of 
about 1.5 MA and rising time of 500 ns～800 ns. The solid insulating films are used to 
insulate the anode electrode plates from the cathode ones. And the facility is used in the air. 
Fig.10 presents the picture of CQ-1.5.Based on CQ-1.5, about 50 GPa pressure is produced 
on the surface of steel samples. The parameter values of CQ-1.5 is given in Table 3. 
 

performance parameters values 
total capacitance 15.88 F 

period in short-circuit 3.40 s 
rise time 500～800 ns 

total inductance about 18 nH 
total resistance ～10 m 

charging voltage 75 kV～80 kV 
peak current ≥1.5 MA 

Table 3. The specifications of CQ-1.5 



Magnetohydrodynamics of Metallic Foil Electrical  
Explosion and Magnetically Driven Quasi-Isentropic Compression 

 

359 

  
   (a)               (b) 

Fig. 10. The picture of experimental apparatus CQ-1.5 (a) and its load area including sample 
and measuring probe (b). 

Fig. 11. shows the typical loading pressure histories. The pressure is a ramp wave. 
 

 
Fig. 11. The loading pressure histories of CQ-1.5 

4. MHD simulation of metallic foil electrically exploding driving highvelocity 
flyers and magnetically driven quasi-isentropic compression 
4.1 Metallic foil electrically exploding driving highvelocity flyers 
The code used to simulate the electrical explosion of metallic foil is improved based our  SSS 
code[32], which is one dimensional hydrodynamic difference code based on Lagrange 
orthogonal coordinate. For the case of electrical explosion of metallic foil, the power of Joule 
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heating is increase into the energy equation, and the magnetic pressure part is considered. 
In order to calculate the power of Joule heating and magnetic pressure, the discharging 
current history is needed which is detemined by the electric circuit equation (2) and 
equation (3). The resistance of foil varies from different phase states during dicharging 
process, so a precisionly electrical resistivity model is needed to decribe this change. The 
physical model is seen in Figure 1, and the Lagrange hydrodynamic equations are: 
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Where, V is specific volume, M is mass, X is Lagrange coordinate, U is velocity, T is 
temperature,  is thermal conductivity,  is the total pressure and =p+q,  p is heating 
pressure, q is artifical viscosity pressure, fEM is magnetic pressure per mass, E is total specific 
energy and E=e+0.5U2, e is specific internal energy, P is power of Joule heating, B is 
magnetic flux density,  is vacuum permeability, k is shape factor and k=0.65, Rfoil is 
resistance of metallic foil and I is the current flowing through metallic foil in the circuit, 
which can be expressed with equation (10). 
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In the equation (10), C0 is the capacitance of the experimental device, L is the total 
inductance of the circuit, Ls is the fixed inductance of the circuit, Ld is the variable 
inductance of the expansion of metallic foil caused by electrical explosion, R is the total 
resistance of the circuit, and Rs is the fixed resistance and Rfoil is the dynamic resistance of 
the foil caused by electrical explosion, b,h and l is the width, thickness and length of the foil, 
 is the electrical resistivity, which is variable and can be expressed by the model put 
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forward by T.J. Burgess[33]. The Burgess’s model can describe the electrical resistivity of the 
foil at different phase states. 
For solid state, there is 

 3
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In equation (11), C1, C2 and C3 are fitting constants,  is Gruneisen coefficient, for many 
materials ,F()=2-1. 
For liquid state, there is 
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In equation (12), for many materials, 0.069 /F mL Tke  , k is a constant, LF is the melting 
latent heat, Tm is melting point temperature and C4 is fitting constant. 
For gas state, the electrical resistivity is related with both the impact between electrons and 
ions and between electrons and neutrons. so,  
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In equation (13), i is the ionization fraction, C5, C6 , C7, C8 and C9 are fitting constants. 
In fact, there is mixed phase zone between liquid and gas states, a mass fraction m is 
defined. When m=0, all mass is condensed, and m=1, all mass is gas, and 0<m<1, the mass is 
mixture states. Two mixture variants are also defined besides mass fraction. 
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Where C10, C11 and C12 are fitting constants. 
The electrical resistivity of mixed phase zone can be expressed 
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Table 4 gives the parameters values of Burgess’s model for Aluminum, which is used in our 
experiments. 
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C1(m-cm) C2 C3 C4 C5 C6 0 
LF(Mbar-
cm3/mole 

-5.35e-5 0.233 1.210 0.638 1.5 1.20e-2 2.13 0.107 
C7 C8 C9 C10 C11 C12 k Tm,0 (ev) 

3.80e-3 18.5 5.96 0.440 3.58e-2 3.05 0.878 0.0804 

Table 4. The parameters values of Burgess’s model for Aluminum 

The calculated results are presented in from Fig.12 through Fig.15. In Fig.14 and Fig.15, the 
experimental and calculated results are compared. 
 

 
Fig. 12. The calculated pressure and flyer velocity history results of electrical explosion of 
Aluminum and Copper foils. 
 

 
Fig. 13. The calculated results of pressure and specific volume of aluminum foil when 
exploding. 
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Fig. 14. The calculated and experimental results of flyer velocities for different flyer sizes. 

 

 
Fig. 15. The experimental and calculated results of discharging current. 

The results presented in Fig.12 through Fig.15 show that the physical model here is 
appropriate to the electrical explosion of metallic foils.  

4.2 Magnetically driven quasi-isentropic compression 
In order to simplify the problem, the one dimensional model of magnetically driven quasi-
isentropic compression can be described by the model shown in Fig.16. The changes of 
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electrical parameters caused by the motion of loaded electrode are not considered, and the 
heat conduction is neglected because it is slow in sub microsecond or one microsecond. A 
standardly discharging current in short circuit is as input condition presented in Fig.17. The 
relative magnetic permeability is supposed tobe 1, that is to say , 0. 
 
 

 
 

Fig. 16. Physical model of simulation 

 

 
Fig. 17. Loading current curves 
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The controlling equations are one dimensionally magnetohydrodynamic ones, which 
include mass conservation equation, momentum conservation equation, energy 
conservation equation and magnetic diffusion equation, as shown in equation (4). The 
original boundary conditions are, 

For t=0 , 
0 : 0, 0
1 : 0, 0

x B P
x B P
  

   
, and for t=tn（at some time）, 

0

0 : 0, 0
1 : ( ), 0

x B P
x B J t P
  

   
. 

The calculation coordinate are Lagrangian ones, and for the Lagrangian coordinate, the 
equation (4) can be converted to equations from (17) through (19). 
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The equation of electrical resistivity is also very important for the case of magnetically 
driven quasi-isentropic compression. In order to simplify the problem, a simple model is 
considered. 

  0 1 Q     (20) 

In equation (20),0 is the electrical resistivity of conductors at temperatureof 0 ºC, is 
heating factor, Q is the heat capacity or increment of internal energy relative to that at 
temperatureof 0 ºC, which is related with temprature at the condensed states. 

 vQ c T  (21) 

In equation (21), cv is specific heat at constant volume, which is close to constant from 0 ºC to 
the temperature of vaporazation point. 
For aluminum， is 0.69×10-9 m3/J, 0 is 2.55×10-8 m. Before vaporazation point, the 
equation (20) is suitable. After that, more complex electrical resisistivity model is needed. 
In this simulation, the stress wave front is defined when the amplitude of pressure reaches 
to 0.1 GPa, and thediffusion front of magnetic field is determined when the magnetic flux 
density is up to 0.2 T[34]。 
Fig.18 gives the distribution of density and temperature of Aluminum sample along 
Lagrangian coordinates for different times in the condition of loading current density 1.5 
MA/cm. 
The results in Fig.18 show that the density and temperature of aluminum sample vary with 
the loading time along the direction of sample thickness because of the Joule heating and 
magnetic field diffusion.  
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            (a)      (b) 
 
 

 
            (c)               (d) 
 
 

 
(e) 

Fig. 18. Distribution of density and temperature of Aluminum sample along Lagrangian 
coordinates for different times under the condition of loading current density 1.5 MA/cm at 
time of 0.09 s (a), 0.18 s (b), 0.27 s (c), 0.36 s (d) and 0.54 s (e) 
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Fig.19 gives the calculated results of distribution of magnetic induction strength along 
Lagrangian coordinates for different times in the condition of loading current density 
1.5MA/cm. 
 
 

 
 

Fig. 19. Distribution of magnetic induction strength along Lagrangian coordinates for 
different times in the condition of loading current density 1.5MA/cm 

And Fig.20 gives the physical characteristics of hydrodynamic stress wave front and 
magnetic diffusion front under the Lagrangian coordinates. The velocity of stress wave front 
is far more than that of the magnetic diffusion front, which is the prerequisite of 
magnetically driven quasi-isentropic compression. And the velocity of magnetic diffusion 
front increases gradually with the increasing of loading current density. 
 
 

  
 (a) current density of 1MA/cm                        (b) current density of 3MA/cm 

Fig. 20. Physical characteristics of hydrodynamic stress wave front and magnetic diffusion 
front under the Lagrangian coordinates 
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Fig.21 presents the relationships between the velocity of magnetic diffusion front and 
loading current density. The results show that an inflection poin occurs at the loading 
current density of 1 MA/cm, and that the results can be expressed with two linear equations 
(22) 

 
0.008 0.46 , 1.0 3 MA/cm

0.36 0.06 , 0.5 1.0 MA/cm

D J J

D J J


   



    

 (22) 

In equation (22), D is the velocity of magnetic diffusion, and J is loading current density. 
 
 
 
 
 
 

 
 
 
 
 

Fig. 21. The relationship of magnetic diffusion velocity varying with loading current 
densities. 

Fig.22 is the case of copper samples under magnetically driven quasi-isentropic 
compression. The calculated results show that the particle velocity curves become steeper 
with the increasing of sample thickness, and that the shock is formed when the thickness is 
more than 2.5 mm for this simulating condition. 
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Fig. 22. The particle velocities of copper sample at different thickness in the condition of 
loading current density of 3 MA/cm. 

5. Applications of metallic foil electrically exploding driving highvelocity 
flyers and magnetically driven quasi-isentropic compression 
5.1 Metallic foil electrically exploding driving highvelocity flyers 
5.1.1 Short-pulse shock initiation of explosive 
The apparatus of metallic foil electrically exploding driving high velocity flyer offers an 
attractive means of performing shock initiation experiments. And the impact of an 
electrically exploding driven flyer produces a well-defined stimulus whose intensity and 
duration can be independently varied. Experiments are low-cost and there is fast turn-
around between experiments. 
Short-pulse shock initiation experiments will be very useful in developing more realistic 
theoretical shock initiation models. For the present, the models predicting shock initiation 
thresholds is short of, where very short pulses are employed . The technique can provide 
data to test the capability of improved models. 
Based on our experimental apparatus, the shock initiation characteristics of TATB and 
TATB-based explosives are studied[35,36]. Fig.23 and Fig.24 show the experimental results of 
shock initiation thresholds and run distance to detonation of a TATB-based explosive. 
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Fig. 23. Shock initiation threshold of 50% probability of initiation 

 

 
Fig. 24. Run distance to detonation in a TATB-based explosive 

These experiments have the additional advantage of being applicable to relatively small 
explosive samples, an important consideration for evaluating and ranking new explosives. 

5.1.2 Spallation experiments of materials 
Compared with gas gun and explosively driven loading, The apparatus of metallic foil 
electrically exploding driving high velocity flyer is also a good tool used to research 
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dynamic behaviors of materials. The loading strain rates and stress duration vary easily. In 
order to study damage properties of materials using the apparatus of metallic foil 
electrically exploding driving high velocity flyer, a concept of two-stage flyer is put 
forward[37]. The Mylar flyer flies some distance to impact a buffer plate such as PMMA or 
nylon with different thickness, and the pressure produced in the buffer is attenuated to the 
expected value, and then the attenuated pressure propels the impactor on the buffer to some 
velocity to impact the target. The impactor is the same material as the target. Fig.25 is the 
diagram of the two-stage flyer based on the apparatus of metallic foil electrically exploding 
driving high velocity flyer. 
 

 
Fig. 25. Sketch of two-stage flyer based on the apparatus of metallic foil electrically 
exploding driving high velocity flyer 

By means of the two-stage flyer, the spallations of steel and copper samples were 
researched. Fig.26 is the experimental results[38]. 
 

    
           (a)                   (b) 

Fig. 26. Experimental results of spallation , steel target (a) and copper target (b). 

It is also convenient to study other dynamic behaviors of materials using the electric gun. 
Further experimental researches about materials are being done by our research group. 
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5.1.3 Potential applications 
Equation of state (EOS) measurement is an important potential application for our 
apparatus. In order to increase the loading pressure of this apparatus, two improvements 
should be done. Firstly, the flyer should be Mylar-metal foil laminate flyer . The metal layer 
increases the flyer’s shock impedance and thus the pressure produced in the target. 
Secondly, the storaged energy of apparatus should be increased. The expected pressure 
should be up to 200 GPa or more. 
Impact experiment on the structure is also an important application for the apparatus of 
metallic foil electrically exploding driving high velocity flyer. For the apparatus of metallic 
foil electrically exploding driving high velocity flyer, its environment is well-controlled and 
instrumented, so it is suitable for studying impact phenomena in the fields of space science. 
Fig.27 shows a result of flyer of our apparatus impacting multi-layer structure. 
 

 
Fig. 27. Experimental result of flyer impact multi-layer structure 

5.2 Magnetically driven quasi-isentropic compression 
5.2.1 Compression isentropes of copper and aluminum 
The experimental compression isentropes of T1 copper andL1 pure aluminum(Al content 
more than 99.7%) were measured on the CQ-1.5. The free-surface velocities were measured by 
DISAR, and the data were processed with the backward integration code developed by us. For 
the design of sample sizes, it is necessary that shock should not be formed in the samples and 
the side rarefaction wave should not affect the center regime to meet the requirements of one 
dimensional strain loading. Table 5 are the sizes of experimental samples.  
 

 
Table 5. Experimental conditions 
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Fig.28(a) are the typical free-surface velocity histories measured by DISAR, which show that 
the slope become steeper for thicker sample. The experimental compression isentropes, 
theoretical compression isentropes and shock Hugoniots data are presented in Fig.28(b) and 
Fig.28 (c). 
 

  
          (a)             (b) 

 
(c) 

Fig. 28. Results of ICEs.(a) typical histories of free-surface velocity. (b) experimental, 
theoretical isentropes and Hugoniots data of T1 copper. (c) experimental isentrope of L1 
pure aluminum, isentrope ang Hugoniot data of 6061-T6 aluminum from reference [39]. 

The results show that the experimental compression isentropes are consistent with the 
theoretical ones within a deviation of 3%, and are close to the shock Hugoniot data under 
the pressure of 40GPa and lies under them. Different from the shock method, the whole 
isentrope can be obtained in one shot, and tens of shots are needed to gain one shock 
Hugoniot curve. The calculation results[40] show that the compression isentropes gradually 
deviate from the shock Hugoniots with the increasement of loading pressure over 50 GPa. 
Therefore, the compression isentropes mainly reflect the off- Hugoniot properties of 
materials. Under 50 GPa, the compression isentropes are close to the shock Hugoniots, so 
we can use the isentrope data to check the validity or precision of shock Hugoniots. 
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5.2.2 Phase transition of 45 steel 
Since the quasi-isentropic compression loading technique actually follows the P-v response 
of the material under investigation, the actual evolution of the phase trnasition can be 
observed. The classical polymorphic transtion of iron at 13 GPa has been studied under 
quasi-isentropic compression. The two free-surface velocity profiles recorded in our 
experiments are shown in Fig.28. The elastic precursor wave is clearly seen in the lower 
pressure region of the two profiles. And the plastic wave and phase change wave occur, 
which show that the polymorphic transition() takes place. The velocity profiles in Fig.29 
indicates that the onset of the phase transition is at velocity of 681 m/s, and the pressure of 
phase transition is also about 11.4 GPa. 
 

 
Fig. 29. Velocity profiles of 45 steel under quasi-isentropic compression 

5.2.3 Spallation and elasto-plastic transition of pure tantalum 
Fig.29 shows the results of the spalling experiments for pure tantalum (Ta contents 99.8%). 
The loading strain rate is 2.53×105 1/s. For the sample with thickness of 1.66 mm, the 
spallation is not obvious, perhaps the mirco-damage occurs. For the sample with thickness 
of 1.06 mm, the spallation is obvious, and the pull-back velocity is 129.6 m/s. According to 
the formular (23), the spall strength is 4.49 GPa. 

 spall 0 l pb
1
2

C U    (23) 

where 0 is the initial density of sample, Cl is the Larangian sound speed, Upb is the pull-
back velocity as shown in Fig.4, and spall is the spall strength of materials. 
Under quasi-isentropic compression, the elasto-plastic transition are clearly shown in the 
velocity profiles of 45 steel and pure tantalum in Figure 28 and Fig.30. Here a concept of 
isentropic elastic limit(IEL, IEL) is introduced. For the 45 steel sample, the IEL is 2.26 GPa at 
the loading strain rate of 6.73×105 1/s, and for the pure tantalum sample, the IEL is 2.42 GPa  
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Fig. 30. Velocity profiles of Tantalum samples 

at the loading strain rate of 2.53×105 1/s. Because of the difference of loading strain rates, the 
IEL ranges from 2.26 to 2.35 GPa for 45 steel, and from 2.42 to 2.70 GPa for pure tantalum in 
our experiments, correspondingly, the yield strength ranges from 1.29 to 1.34 GPa for 45 
steel and from 1.12 to 1.25 GPa for pure tantalum. 

5.2.4 Magnetically driven high-velocity flyers 
It is an important application to launch high-velocity flyer plates using the techniques of 
magnetically driven quasi-isentropic compression. For the present, the reseachers has 
launched the aluminum flyer plate with the size of 15 mm×11 mm×0.9 mm to the velocity of 
43 km/s using this technique[23], and can produce 1～2 TPa shock pressure on the heavy 
metallic or quartz samples. Based on CQ-1.5, the aluminum flyer plate with the size of 8 
mm×6 mm×0.9 mm was launched to about 9 km/s by us. Figure 31 shows the experimental 
results of the velocities of the flyers. 
 

  
                   (a)                                                   (b)  

Fig. 31. The velocities of the aluminum flyer plates driven by magnetic ressure.The velocities 
measured by VISAR (a) and the averaged velocity measured by optical fibres pins (b) 
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6. Summary 
The physical processes of electrical explosion of metallic foil and magnetically driven quasi-
isentropic compression are very complex. This chapter dicusses these problem simply from 
the aspect of one dimensionally magnetohydrodyamics. The key variable of electrical 
resistivity was simplified, which is very improtant. Especially for the problem of 
magnetically driven quasi-isentropic compression, only the resistivity is considered before 
the vaporazation point of the matter. In fact, the phase states of the loading surface vary 
from solid to liquid, gas and plasma when the loading current density becomes more and 
more. In order to optimize the structural shapes of electrodes and the suitable sizes of 
samples and windows in the experiments of magnetically driven quasi-isentropic 
compression, two dimensionally magnetohydrodynamic simulations are necessary. 
The applications of the techniques of electrical explosion of metallic foil and magnetically 
driven quasi-isentropic compression are various, and the word of versatile tools can be used 
to describe them. In this chapter, only some applications are presented. More applications 
are being done by us, such as the quasi-isentropic compression experiments of un-reacted 
solid explosives, the researches of hypervelocity impact phenomena and shock Hugoniot of 
materials at highly loading strain rates of 105～107 1/s. 
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1. Introduction

1.1 Droplet in space

It is considered that our solar system 4.6 billion years ago was composed of a proto-sun
and the circum-sun gas disk. In the gas disk, originally micron-sized fine dust particles
accumulated by mutual collisions to be 1000 km-sized objects like as planets. Therefore, to
understand the planet formation, we have to know the evolution of the dust particles in the
early solar gas disk. One of the key materials is a millimeter-sized and spherical-shaped grain
termed as “chondrule" observed in chondritic meteorites.

Chondrules are considered to have been formed from molten droplets about 4.6 billion
years ago in the solar gas disk (Amelin et al., 2002; Amelin & Krot, 2007). Fig. 1 is a
schematic of the formation process of chondrules. In the early solar gas disk, aggregation
of the micron-sized dust particles took place before planet formation (Nakagawa et al., 1986).
When the dust aggregates grew up to about 1 mm in size (precursor), some astrophysical
process heated them to the melting point of about 1600 − 2100 K (Hewins & Radomsky,
1990). The molten dust aggregate became a sphere by the surface tension (droplet),
and then cooled again to solidify in a short period of time (chondrule). The formation
conditions of chondrules, such as heating duration, maximum temperature, cooling rate,
and so forth, have been investigated experimentally by many authors (Blander et al., 1976;
Fredriksson & Ringwood, 1963; Harold C. Connolly & Hewins, 1995; Jones & Lofgren, 1993;
Lofgren & Russell, 1986; Nagashima et al., 2006; Nelson et al., 1972; Radomsky & Hewins,
1990; Srivastava et al., 2010; Tsuchiyama & Nagahara, 1981-12; Tsuchiyama et al., 1980; 2004;
Tsukamoto et al., 1999). However, it has been controversial what kind of astronomical event
could have produced chondrules in early solar system. The chondrule formation is one of the
most serious unsolved problems in planetary science.

The most plausible model for chondrule formation is a shock-wave heating model, which
has been tested by many theoreticians (Ciesla & Hood, 2002; Ciesla et al., 2004; Desch & Jr.,
2002; Hood, 1998; Hood & Horanyi, 1991; 1993; Iida et al., 2001; Miura & Nakamoto, 2006;
Miura et al., 2002; Morris & Desch, 2010; Morris et al., 2009; Ruzmaikina & Ip, 1994; Wood,
1984). Fig. 2 is a schematic of dust heating mechanism by the shock-wave heating model.
Initially, the chondrule precursors were floating in the gas disk without any large relative
velocity against the ambient gas (panel (a)). When a shock wave was generated in the gas disk,
the gas behind the shock front was accelerated suddenly. On the other hand, the chondrule
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Fig. 1. Schematic of formation process of a chondrule. The precursor of chondrule is an
aggregate of μm-sized cosmic dusts. The precursor is heated and melted by some
mechanism, becomes a sphere by the surface tension, then cools to solidify in a short period
of time.

precursors remain un-accelerated because of their inertia. Therefore, after passage of the shock
front, the large relative velocity arises between the gas and dust particles (panel (b)). The
relative velocity can be considered as fast as about 10 km s−1 (Iida et al., 2001). When the gas
molecule collides to the surface of chondrule precursors with such large velocity, its kinetic
energy thermalizes at the surface and heats the chondrule precursors, as termed as a gas drag
heating. The peak temperature of the precursor is determined by the balance between the gas
drag heating and the radiative cooling at the precursor surface (Iida et al., 2001). The gas drag
heating is capable to heat the chondrule precursors up to the melting point if we consider a
standard model of the early solar gas disk (Iida et al., 2001).

1.2 Physical properties of chondrules

The chondrule formation models, including the shock-wave heating model, are required not
only to heat the chondrule precursors up to the melting point but also to reproduce other
physical and chemical properties of chondrules recognized by observations and experiments.
These properties that should be reproduced are summarized as observational constraints
(Jones et al., 2000). The reference listed 14 constraints for chondrule formation. To date, there
is no chondrule formation model that can account for all of these constraints.

Here, we review two physical properties of chondrules; size distribution and
three-dimensional shape. The latter was not listed as the observational constraints in
the literature (Jones et al., 2000), however, we would like to include it as an important
constraint for chondrule formation. As discussed in this chapter, these two properties
strongly relate to the hydrodynamics of molten chondrule precursors in the gas flow behind
the shock front.

1.2.1 Size distribution

Fig. 3 shows the size distribution of chondrules compiled from measurement data in some
literatures (Nelson & Rubin, 2002; Rubin, 1989; Rubin & Grossman, 1987; Rubin & Keil, 1984).
The horizontal axis is the diameter D and the vertical axis is the cumulative fraction of
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Fig. 2. Schematic of the shock-wave heating model for chondrule formation. (a) The
precursors of chondrules are in a gas disk around the proto-sun 4.6 billion years ago. The gas
and precursors rotate around the proto-sun with almost the same angular velocity, so there is
almost no relative velocity between the gas and precursors. (b) If a shock wave is generated
in the gas disk by some mechanism, the gas behind the shock front is suddenly accelerated.
In contrast, the precursor is not accelerated because of its large inertia. The difference of their
behaviors against the shock front causes a large relative velocity between them. The
precursors are heated by the gas friction in the high velocity gas flow.

chondrules smaller than D in diameter. Table 1 shows the mean diameter and the standard
deviation of each measurement. It is found that the chondrule sizes vary according to
chondrite type. The mean diameters of chondrules in ordinary chondrites (LL3 and L3) are
from 600 μm to 1000 μm. In contrast, ones in enstatite chondrite (EH3) and carbonaceous
chondrite (CO3) are from 100 μm to 200 μm.

It should be noted that the true chondrule diameters are slightly larger than the data shown
in Fig. 3 and Table 1 because of the following reason. This data was obtained by observations
on thin-sections of chondritic meteorites. The chondrule diameter on the thin-section is not
necessarily the same as the true one because the thin-section does not always intersect the
center of the chondrule. Statistically, the mean and median diameters measured on the thin
section are, respectively,

√
2/3 and

√
3/4 of the true diameters (Hughes, 1978). However,

we do not take care the difference between true and measured diameters because it is not a
substantial issue in this chapter.

It is considered that in the early solar gas disk the dust aggregates have the size distribution
from ≈ μm (initial fine dust particles) to a few 1000 km (planets). In spite of the wide
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Fig. 3. Size distributions of natural chondrules in various types of chondritic meteorites (LL3,
L3, EH3, and CO3). The vertical axis is the normalized cumulative number of chondrules
whose diameters are smaller than that of the horizontal axis. Each data was compiled from
the following literatures; LL3 chondrites (Nelson & Rubin, 2002), L3 chondrites
(Rubin & Keil, 1984), EH3 chondrites (Rubin & Grossman, 1987), and CO3 chondrites (Rubin,
1989), respectively. The total number of chondrules measured in each literature is 719 for
LL3, 607 for L3, 689 for EH3, and 2834 for CO3, respectively.

size range of solid materials, sizes of chondrules distribute in a very narrow range of
about 100 − 1000 μm. Two possibilities for the origin of chondrule size distribution can
be considered; (i) size-sorting prior to chondrule formation, and (ii) size selection during
chondrule formation. In the case of (i), we need some mechanism of size-sorting in the early
solar gas disk (Teitler et al., 2010, and references therein). In the case of (ii), the chondrule
formation model must account for the chondrule size distribution. The latter possibility is
what we investigate in this chapter.

1.2.2 Deformation from a perfect sphere

It is considered that spherical chondrule shapes were due to the surface tension when they
melted. However, their shapes deviate from a perfect sphere and the deviation is an important
clue to identify the formation mechanism. Tsuchiyama et al. (Tsuchiyama et al., 2003)
measured the three-dimensional shapes of chondrules using X-ray microtomography. They
selected 20 chondrules with perfect shapes and smooth surfaces from 47 ones for further
analysis. Their external shapes were approximated as three-axial ellipsoids with axial radii of
a, b, and c (a ≥ b ≥ c), respectively. Fig. 4 shows results of the measurement. The horizontal
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chondrite meteorite chondrule number diam. D ref.
type type type∗ [μm]
L3 Inman BO 173 1038±937 (Rubin & Keil, 1984)
L3 Inman RP+C 201 852±598 (Rubin & Keil, 1984)
L3 ALHA77011 BO 163 680±625 (Rubin & Keil, 1984)
L3 ALHA77011 RP+C 70 622±453 (Rubin & Keil, 1984)

LL3 total of 5 types all 719 574+405
−237 (Nelson & Rubin, 2002)

EH3 total of 3 types all 689 219+189
−101 (Rubin & Grossman, 1987)

CO3 total of 11 types all 2834 148+132
−70 (Rubin, 1989)

Table 1. Diameters of chondrules from various types of chondritic meteorites and the
standard deviations. ∗BO = barred olivine, RP = radial pyroxene, C = cryptocrystalline. all =
all types are included.

and vertical axes are axial ratios of b/a and c/b, respectively. A point (b/a, c/b) = (1, 1)
means a perfect sphere because all of three axes have the same length. As going downward
from the point, the shape becomes oblate (disk-like shape) because a = b > c. On the other
hand, the shape becomes prolate (rugby-ball-like shape) as going leftward because a > b = c.
The chondrule shapes in the measurement are classified into two groups: spherical chondrules
in group-A and prolate chondrules in group-B. Chondrules in group-A have axial ratios of
c/b >∼ 0.9 and b/a >∼ 0.9. In contrast, chondrules in group-B have smaller values of b/a as
≈ 0.7 − 0.8.

It is considered that the deviation from a perfect sphere results from the deformation of a
molten chondrule before solidification. For example, if the molten chondrule rotates rapidly,
the shape becomes oblate due to the centrifugal force (Chandrasekhar, 1965). However,
the shapes of chondrules in group-B are prolate rather than oblate. Tsuchiyama et al.
(Tsuchiyama et al., 2003) proposed that the prolate chondrules in group-B can be explained
by spitted droplets due to the shape instability with high-speed rotation. However, it is not
clear whether the transient process such as the shape instability accounts for the range of axial
ratio of group-B chondrules or not.

1.3 Hydrodynamics of molten chondrule precursors

If chondrules were melted behind the shock front, the molten droplet ought to be exposed
to the high-velocity gas flow. The gas flow causes many hydrodynamics phenomena on the
molten chondrule droplet as follows. (i) Deformation: the ram pressure deforms the droplet
shape from a sphere. (ii) Internal flow: the shearing stress at the droplet surface causes
fluid flow inside the droplet. (iii) Fragmentation: a strong gas flow will break the droplet
into many tiny fragments. Hydrodynamics of the droplet in high-velocity gas flow strongly
relates to the physical properties of chondrules. However, these hydrodynamics behaviors
have not been investigated in the framework of the chondrule formation except of a few
examples that neglected non-linear effects of hydrodynamics (Kato et al., 2006; Sekiya et al.,
2003; Uesugi et al., 2005; 2003).

To investigate the hydrodynamics of a molten chondrule droplet in the high-velocity gas flow,
we performed computational fluid dynamics (CFD) simulations based on cubic-interpolated
propagation/constrained interpolation profile (CIP) method. The CIP method is one of the
high-accurate numerical methods for solving the advection equation (Yabe & Aoki, 1991;
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Fig. 4. Three-dimensional shapes of chondrules (Tsuchiyama et al., 2003, and their
unpublished data). a, b, and c are axial radii of chondrules when their shapes are
approximated as three-axial ellipsoids (a ≥ b ≥ c), respectively. The textures of these
chondrules are 16 porphyritic (open circle), 3 barred-olivine (filed circle), and 1
crypto-crystalline (filled square). The radius of each symbol is proportional to the effective
radius of each chondrule r∗ ≡ (abc)1/3; the largest circle corresponds to r∗ = 1129 ¯m. For
the data of crypto-crystalline, r∗ = 231 ¯m. Chondrule shapes are classified into two groups:
group-A shows the relatively small deformation from the perfect sphere, and group-B is
prolate with axial ratio of b/a ≈ 0.7 − 0.8.
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Yabe et al., 2001). It can treat both compressible and incompressible fluids with large density
ratios simultaneously in one program (Yabe & Wang, 1991). The latter advantage is important
for our purpose because the droplet density (≈ 3 g cm−3) differs from that of the gas disk
(≈ 10−8 g cm−3 or smaller) by many orders of magnitude.

In addition, we should pay a special attention how to model the ram pressure of the gas flow.
The gas around the droplet is so rarefied that the mean free path of the gas molecules is an
order of about 100 cm if we consider a standard gas disk model. The mean free path is much
larger than the typical size of chondrules. This means that the gas flow around the droplet is
a free molecular flow, so it does not follow the hydrodynamical equations. Therefore, in our
model, the ram pressure acting on the droplet surface per unit area is explicitly given in the
equation of motion for the droplet by adopting the momentum flux method as described in
section 3.2.2.

1.4 Aim of this chapter

The hydrodynamical behaviors of molten chondrules in a high-velocity gas flow are important
to elucidate the origin of physical properties of chondrules. However, it is difficult for
experimental studies to simulate the high-velocity gas flow in the early solar gas disk,
where the gas density is so rarefied that the gas flow around droplets does not follow the
hydrodynamics equations. We developed the numerical code to simulate the droplet in a
high-velocity rarefied gas flow. In this chapter, we describe the details of our hydrodynamics
code and the results. We propose new possibilities for the origins of size distribution and
three-dimensional shapes of chondrules based on the hydrodynamics simulations.

We describe the governing equations in section 2 and the numerical procedures in section
3. In section 4, we describe the results of the hydrodynamics simulations regarding the
deformation of molten chondrules in the high-velocity rarefied gas flow and discuss the
origin of rugby-ball-like shaped chondrules. In section 5, we describe the results regarding
the fragmentation of molten chondrules and consider the relation to the size distribution of
chondrules. We conclude our hydrodynamics simulations in section 6.

2. Governing equations

The governing equations are the equation of continuity and the Navier-Stokes equation as
follows;

∂ρ

∂t
+ �∇ · (ρ�u) = 0, (1)

∂�u
∂t

+ (�u · �∇)�u =
−�∇p + μ∇2�u + �Fs + �Fg

ρ
+�g, (2)

where ρ is the density of fluid, �u is the velocity, p is the pressure, and μ is the viscosity. The
ram pressure of the high-velocity gas flow, �Fg, is exerted on the surface of the droplet and
given by (Sekiya et al., 2003)

�Fg = −pfm(�ni ·�ng)�ngδ(�r −�ri) for�ni ·�ng ≤ 0, (3)

where �ni is the unit normal vector of the surface of the droplet,�ng is the unit vector pointing
the direction in which the gas flows, and �ri is the position of the liquid-gas interface. The
delta function δ(�r −�ri) means that the ram pressure works only at the interface. The ram

387Hydrodynamics of a Droplet in Space



8 Will-be-set-by-IN-TECH

pressure does not work for �ni ·�ng > 0 because it indicates the opposite surface which does
not face the molecular flow. The ram pressure causes the deceleration of the center of mass
of the droplet. In our coordinate system co-moving with the center of mass, the apparent
gravitational acceleration �g should appear in the equation of motion. The surface tension, �Fs,
is given by (Brackbill et al., 1992)

�Fs = −γsκ�niδ(�r −�ri), (4)

where γs is the fluid surface tension and κ is the local surface curvature. Finally, we consider
the equation of state given by

dp
dρ

= c2
s , (5)

where cs is the sound speed.

3. Numerical methods in hydrodynamics

To solve the equation of continuity (Eq. (1)) numerically, we introduce a color function φ that
changes from 0 to 1 continuously. For incompressible two fluids, a density in each fluid is
uniform and has a sharp discontinuity at the interface between these two fluids if the density
of a fluid is different from another one. By using the color function, we can distinguish these
two fluids as follows; φ = 1 for fluid 1, φ = 0 for fluid 2, and a region where 0 < φ < 1 for the
interface. The density of a fluid element is given by

ρ = φρ1 + (1 − φ)ρ2, (6)

where ρ1 and ρ2 are the inherent densities for fluid 1 and fluid 2, respectively. The governing
equation for φ is given by

∂φ

∂t
+ �∇ · (φ�u) = 0. (7)

The conservation equation for φ (Eq. (7)) is approximately equivalent to the original one
(Eq. (1)) through the relationship between ρ and φ given by Eq. (6) (Miura & Nakamoto, 2007).
Therefore, the problem to solve Eq. (1) results in to solve Eq. (7). We solve Eq. (7) using
R-CIP-CSL2 method with anti-diffusion technique (sections 3.1.2 and 3.1.3).

In this study, the fluid 1 is the molten chondrule and the fluid 2 is the disk gas around the
chondrule. The inherent densities are given by ρ1 = ρd and ρ2 = ρa, where subscripts “d"
and “a" mean the droplet and ambient gas, respectively. The other physical values of the
fluid element (viscosity μ and sound speed cs) are given in the same manner as the density ρ,
namely, μ = φμd + (1 − φ)μa and cs = φcs,d + (1 − φ)cs,a, respectively.

The Navier-Stokes equation (Eq. (2)) and the equation of state (Eq. (5)) are separated into two
phases; the advection phase and the non-advection phase. The advection phases are written
as

∂�u
∂t

+ (�u · �∇)�u = 0,

∂p
∂t

+ (�u · �∇)p = 0. (8)
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Parameter Sign Value
Momentum of gas flow pfm 4000 dyn cm−2

Surface tension γs 400 dyn cm−1

Viscosity of droplet μd 1.3 g cm−1 s−1

Density of droplet ρd 3 g cm−3

Sound speed of droplet cs,d 2×105 cm s−1

Density of ambient ρa 10−6 g cm−3

Sound speed of ambient cs,a 10−5 cm s−1

Viscosity of ambient μa 10−2 g cm−1 s−1

Droplet radius r0 500 μm

Table 2. Canonical input physical parameters for simulations of molten chondrules exposed
to the high-velocity rarefied gas flow. We ought to use these parameters if there is no special
description.

We solve above equations using the R-CIP method, which is the oscillation preventing method
for advection equation (section 3.1.1). The non-advection phases can be written as

∂�u
∂t

= −
�∇p
ρ

+
�Q
ρ

,

∂p
∂t

= −ρc2
s�∇ ·�u, (9)

where �Q is the summation of forces except for the pressure gradient. The problem intrinsic
in incompressible fluid is in the high sound speed in the pressure equation. Yabe and Wang
(Yabe & Wang, 1991) introduced an excellent approach to avoid the problem (section 3.2.1). It
is called as the C-CUP method (Yabe & Wang, 1991). The numerical methods to calculate ram
pressure of the gas flow and the surface tension of droplet in �Q are described in sections 3.2.2
and 3.2.3, respectively.

The input parameters adopted in this chapter are listed in Table 2.

3.1 Advection phase

3.1.1 CIP method

The CIP method is one of the high-accurate numerical methods for solving the advection
equation (Yabe & Aoki, 1991; Yabe et al., 2001). In one-dimension, the advection equation is
written as

∂ f
∂t

+ u
∂ f
∂x

= 0, (10)

where f is a scaler variable of the fluid (e.g., density), u is the fluid velocity in the x-direction,
and t is the time. When the velocity u is constant, the exact solution of Eq. (10) is given by

f (x; t) = f (x − ut; 0), when u is constant, (11)

which indicates a simple translational motion of the spatial profile of f with the constant
velocity u.

Let us consider that the values of f on the computational grid points xi−1, xi, and xi+1 are
given at the time step n and denoted by f n

i−1, f n
i , and f n

i+1, respectively. In Fig. 5, f n are shown
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Fig. 5. Interpolate functions with various methods: CIP (solid), Lax-Wendroff (dashed), and
first-order upwind (dotted). The filled circles indicate the values of f defined on the digitized
grid points xi−1, xi , and xi+1 before updated.

by filled circles. From Eq. (11), we can obtain the values of fi at the next time step n + 1 by
just obtaining f n

i at the upstream point x = xi − uΔt, where Δt is the time interval between
tn and tn+1. If the upstream point is not exactly on the grid points, which is a very usual
case, we have to interpolate f n

i with an appropriate mathematical function composed of f n
i−1,

f n
i , and so forth. There are some variations of the numerical solvers by the difference of the

interpolate function Fi(x). One of them is the first-order upwind method, which interpolates
f n
i by a linear function and satisfies following two constraints; Fi(xi−1) = f n

i−1 and Fi(xi) = f n
i

(here we assume that u > 0 and the upstream point for f n
i locates left-side of xi). The other

variation is the Lax-Wendroff method, which uses a quadratic polynomial satisfying three
constraints; Fi(xi−1) = f n

i−1, Fi(xi) = f n
i , and Fi(xi+1) = f n

i+1. We show these interpolation
functions in Fig. 5.

On the contrary, the CIP method interpolates using a cubic polynomial, which satisfies
following four constraints; Fi(xi−1) = f n

i−1, Fi(xi) = f n
i , ∂Fi/∂x(xi−1) = f n

x,i−1, and
∂Fi/∂x(xi) = f n

x,i, where fx ≡ ∂ f /∂x is the spatial gradient of f . The interpolation function is
given by

Fi(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di, (12)

where ai, bi, ci, and di are the coefficients determined from f n
i−1, f n

i , f n
x,i−1, and f n

x,i. The
expressions of these coefficients are shown in (Yabe & Aoki, 1991). We show the profile of
Fi(x) in Fig. 5 with f n

x,i−1 = f n
x,i = 0. In the CIP method, therefore, we need the values of f n

x in
addition of f n for solving the advection phase.
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In the CIP method, fx is treated as an independent variable and updated independently from
f as follows. Differentiating Eq. (10) with respect to x, we obtain

∂ fx

∂t
+ u

∂ fx

∂x
= − fx

∂u
∂x

, (13)

where the second term of the left-hand side indicates the advection term and the right-hand
side indicates the non-advection term. The interpolate function for the advection of fx is given
by ∂Fi/∂x. The non-advection term can be solved analytically by considering that ∂u/∂x is
constant.

Additionally, there is an oscillation preventing method in the concept of the CIP method, in
which the rational function is used as the interpolate function. The rational function is written
as (Xiao et al., 1996)

Fi(x) =
ai(x − xi)

3 + bi(x − xi)
2 + ci(x − xi) + di

1 + αiβi(x − xi)
, (14)

where αi and βi are coefficients. The expressions of these coefficients are shown in (Xiao et al.,
1996). Usually, we adopt αi = 1 to prevent oscillation. This method is called as the R-CIP
method. The model with αi = 0 corresponds to the normal CIP method.

3.1.2 CIP-CSL2 method

The CIP-CSL2 method is one of the numerical methods for solving the conservative equation.
In one-dimension, the conservative equation is written as

∂ f
∂t

+
∂(u f )

∂x
= 0. (15)

Integrating Eq. (15) over x from xi to xi+1, we obtain
σi+1/2

∂t
+ [u f ]xi+1

xi
= 0, (16)

where σi+1/2 ≡
∫ xi+1

xi

f dx. For f being density, σi+1/2 corresponds to the mass contained in a

computational cell between i and i + 1, so it should be conserved during the time integration.
Since the physical meaning of u f in the second term of the left-hand side is the flux of σ per
unit area and per unit time, the time evolution of σ is determined by

σn+1
i+1/2 = σn

i+1/2 − Ji+1 + Ji, (17)

where Ji ≡
∫ tn+1

tn
u f dt is the transported value of σ from a region of x < xi to that of x > xi

within Δt. The CIP-CSL2 method uses the integrated function Di(x) ≡
∫ x

xi−1

Fi(x)dx for the

interpolation when ui > 0. The function Di(x) is a cubic polynomial satisfying following
four constraints; Di(xi−1) = 0, Di(xi) = σi−1/2, ∂Di/∂x(xi−1) = Fi(xi−1) = fi−1, and
∂Di/∂x(xi) = Fi(xi) = fi. Moreover, since Eq. (15) can be rewritten as the same form of
Eq. (13), we can obtain the updated value f n+1 as well as f n+1

x in the CIP method.

Additionally, there is an oscillation preventing method in the concept of the CIP-CSL2 method,
in which the rational function is used for the function Di(x) (Nakamura et al., 2001). This
method is called as the R-CIP-CSL2 method.
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3.1.3 Anti-diffusion

To keep the sharp discontinuity in the profile of φ, we explicitly add an diffusion term with a
negative diffusion coefficient α (anti-diffusion) to the CIP-CSL2 method (Miura & Nakamoto,
2007). In our model, we have an additional diffusion equation about σ as

∂σ

∂t
=

∂

∂x

(
α

∂σ

∂x

)
. (18)

Eq. (18) can be separated into two equations as

∂σ

∂t
= − ∂J′

∂x
, (19)

J′ = −α
∂σ

∂x
, (20)

where J′ indicates the anti-diffusion flux per unit area and per unit time. Using the finite
difference method, we obtain

σ∗∗
i+1/2 = σ∗

i+1/2 − ( Ĵ′i+1 − Ĵ′i ), (21)

Ĵ′i = −α̂i × minmod(Si−1, Si, Si+1), (22)

where Ĵ ≡ J′/(Δx/Δt) is the mass flux which has the same dimension of σ, α̂ ≡ α/(Δx2/Δt)
is the dimensionless diffusion coefficient, and Si ≡ σi+1/2 − σi−1/2. The superscripts * and
** indicate the time step just before and after the anti-diffusion. The minimum modulus
function (minmod) is often used in the concept of the flux limiter and has a non-zero value of
sign(a)min(|a|, |b|, |c|) only when a, b, and c have the same sign. The value of the diffusion
coefficient α̂ is also important. Basically, we take α̂ = −0.1 for the anti-diffusion. Here, it
should be noted that σ takes the limited value as 0 ≤ σ ≤ σm, where σm is the initial value
for inside of the droplet. The undershoot (σ < 0) or overshoot (σ > σm) are physically
incorrect solutions. To avoid that, we replace α̂i = 0.1 only when σi−1/2 or σi+1/2 are out
of the appropriate range. We insert the anti-diffusion calculation after the CIP-CSL2 method
is completed.

3.1.4 Test calculation

In order to demonstrate the advantage of the CIP method, we carried out one-dimensional
advection calculations with various numerical methods. Fig. 6 shows the spatial profiles of
f of the test calculations. The horizontal axis is the spatial coordinate x. The initial profile
is given by the solid line, which indicates a rectangle wave. We set the fluid velocity u = 1,
the intervals of the grid points Δx = 1, and the time step for the calculation Δt = 0.2. These
conditions give the CFL number ν ≡ uΔt/Δx = 0.2, which indicates that the profile of f
moves 0.2 times the grid interval per time step. Therefore, the right side of the rectangle wave
will reach x = 80 after 300 time steps and the dashed line indicates the exact solution. The
filled circles indicate the numerical results after 300 time steps.

The upwind method does not keep the rectangle shape after 300 time steps and the profile
becomes smooth by the numerical diffusion (panel a). In the Lax-Wendroff method, the
numerical oscillation appears behind the real wave (panel b). Comparing with above two
methods, the CIP method seems to show better solution, however, some undershoots ( f < 0)
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Fig. 6. Numerical solutions of the one-dimensional advection or conservation equation
solved by various methods: (a) first-order upwind, (b) Lax-Wendroff, (c) CIP, (d) R-CIP, (e)
R-CIP-CSL2 without anti-diffusion, and (f) R-CIP-CSL2 with anti-diffusion.

or overshoots ( f > 1) are observed in the numerical result (panel c). In the R-CIP method,
although the faint numerical diffusion has still remained, we obtain the excellent solution
comparing with the above methods.

We also show the numerical results of the one-dimensional conservative equation. We use the
same conditions with the one-dimensional advection equation. Note that Eq. (15) corresponds
to Eq. (10) when the velocity u is constant. The panel (e) shows the result of the R-CIP-CSL2
method, which is similar to that of the R-CIP method. In the panel (f), we found that the
combination of the R-CIP-CSL2 method and the anti-diffusion technique shows the excellent
solution in which the numerical diffusion is prevented effectively.
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3.2 Non-advection phase

3.2.1 C-CUP method

Using the finite difference method to Eq. (9), we obtain (Yabe & Wang, 1991)

�u∗∗ −�u∗
Δt

= −
�∇p∗∗

ρ∗ +
�Q
ρ∗ ,

p∗∗ − p∗
Δt

= −ρ∗c2
s�∇ ·�u∗∗, (23)

where the superscripts * and ** indicate the times before and after calculating the
non-advection phase, respectively. Since the sound speed is very large in the incompressible
fluid, the term related to the pressure should be solved implicitly. In order to obtain the
implicit equation for p∗∗, we take the divergence of the left equation and substitute �u∗∗ into
the right equation. Then we obtain an equation

�∇ ·
(
�∇p∗∗

ρ∗

)
=

p∗∗ − p∗
ρ∗c2

s Δt2 +
�∇ · �u∗

Δt
+ �∇ ·

(
�Q
ρ∗

)
. (24)

The problem to solve Eq. (24) resolves itself into to solve a set of linear algebraic equations
in which the coefficients becomes an asymmetric sparse matrix. After p∗∗ is solved, we can
calculate �u∗∗ by solving the left equation in Eq. (23).

3.2.2 Ram pressure of free molecular flow

The ram pressure of the gas flow is acting on the droplet surface exposed to the high-velocity
gas flow. It should be noted that the gas flow around a mm-sized droplet does not follow
the hydrodynamical equations because the nebula gas is too rarefied. The mean free path
of the nebula gas can be estimated by l = 1/(ns), where s is the collisional cross section
of gas molecules and n is the number density of the nebula gas. Typically, we adopt n ≈
1014 cm−3 based on the standard model of the early solar system at a distance from the sun
of an astronomical unit (Hayashi et al., 1985). Substituting s ≈ 10−16 cm−2 for the hydrogen
molecule (Hollenbach & McKee, 1979), we obtain l ≈ 100 cm. On the other hand, the typical
size of chondrules is about a few 100 μm (see Fig. 3). Since the object that disturbs the gas
flow is much smaller than the mean free path of the gas, the free stream velocity field is not
disturbed except of the direct collision with the droplet (free molecular flow).

Consider that the molecular gas flows for the positive direction of the x-axis. The x-component
of the ram pressure Fg,x is given by

Fg,x = pfmδ(x − xi), (25)

where xi is the position of the droplet surface. This equation can be separated into two
equations as

Fg,x = − ∂M
∂x

,
∂M
∂x

= −pfmδ(x − xi), (26)

where M is the momentum flux of the molecular gas flow. The right equation in Eq. (26) means
that the momentum flux terminates at the droplet surface. The left equation in Eq. (26) means
that the decrease of the momentum flux per unit length corresponding to the ram pressure
per unit area.
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Fig. 7. Spatial distributions of the momentum flux M (a) and the ram pressure Fg (b) of the
free molecular gas flow around a spherical droplet in xy-plane. The dashed circles are
sections of the droplet surfaces in xy-plane. Units of the gray scales are pfm for the panel (a)
and dyn cm−3 for the panel (b), respectively. We adopt pfm = 5000 dyn cm−2 in this figure.

Using the finite difference method to the right equation in Eq. (26), we obtain

Mi+1 = Mi − pfm(φ̄i+1 − φ̄i) for φ̄i+1 ≥ φ̄i, (27)

where φ̄ is the smoothed profile of φ (see section 3.2.4), and Mi+1 = Mi for φ̄i+1 < φ̄i because
the momentum flux does not increase when the molecular flow goes outward from inside of
the droplet. Similarly, we obtain

Fg,xi = − Mi − Mi+1
Δx

, (28)

from the left equation in Eq. (26). The momentum flux at upstream is M0 = pfm. First, we
solve Eq. (27) and obtain the spatial distribution of the molecular gas flow in all computational
domain. Then, we calculate the ram pressure by Eq. (28).

Fig. 7(a) shows the distribution of momentum flux M around two droplets in xy-plane. The
dashed circles are the external shapes of large and small droplets. The gray scale is normalized
by pfm, so unity (white region) means undisturbed molecular flow and zero (dark region)
means no flux because the free molecular flow is obstructed by the droplet. It is found that
the gas flow is obstructed only behind the droplets. Fig. 7(b) shows the distribution of the ram
pressure Fg,x calculated from the momentum flux distribution. The ram pressure is acting at
the droplet surface where M changes steeply. Note that no ram pressure acts at bottom half of
the smaller droplet because the molecular flow is obstructed by the larger one. As shown in
Fig. 7, the model of ram pressure shown here well reproduces the property of free molecular
flow.

We calculate the momentum flux M and the ram pressure Fg at every time step in numerical
simulations. Therefore, these spatial distributions are affected by droplet deformation.

3.2.3 Surface tension

The surface tension is the normal force per unit interfacial area. Brackbill et al. (Brackbill et al.,
1992) introduced a method to treat the surface tension as a volume force by replacing the
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discontinuous interface to the transition region which has some width. According to them,
the surface tension is expressed as

�Fs = γsκ�∇φ/[φ], (29)

where [φ] is the jump in color function at the interface between the droplet and the ambient
gas. In our definition, we obtain [φ] = 1. The curvature is given by

κ = −(�∇ ·�n), (30)

where
�n = �∇φ/|�∇φ|. (31)

The finite difference method of Eq. (31) is shown in (Brackbill et al., 1992). When we calculate
the surface tension, we use the smoothed profile of φ (see section 3.2.4).

3.2.4 Smoothing

We can obtain the numerical results keeping the sharp interface between the droplet and the
ambient region. However, the smooth interface is suitable for calculating the smooth surface
tension. We use the smoothed profile of φ only at the time to calculate the surface tension and
the ram pressure acting on the droplet surface. In this study, the smoothed color function φ̄ is
calculated by

φ̄ =
1
2

φi,j,k +
1
2

φi,j,k + C1 ∑6
L1

φL1 + C2 ∑12
L2

φL2 + C3 ∑8
L3

φL3

1 + 6C1 + 12C2 + 8C3
, (32)

where L1, L2, and L3 indicate grid indexes of the nearest, second nearest, and third nearest
from the grid point (i, j, k), for example, L1 = (i + 1, j, k), L2 = (i + 1, j + 1, k), L3 = (i + 1, j +
1, k + 1), and so forth. It is easily found that in the three-dimensional Cartesian coordinate
system, there are six for L1, twelve for L2, and eight for L3, respectively. The coefficients are
set as

C1 = 1/(6 + 12/
√

2 + 8/
√

3), C2 = C1/
√

2, C3 = C1/
√

3. (33)

We iterate the smoothing five times. Then, we obtain the smooth transition region of about
twice grid interval width. We use the smooth profile of φ only when calculating the surface
tension and the ram pressure. It should be noted that the original profile φ with the sharp
interface is kept unchanged.

4. Deformation of droplet by gas flow

4.1 Vibrational motion

We assume that the gas flow suddenly affects the initially spherical droplet. Fig. 8 shows
the time sequence of the droplet shape and the internal velocity. The horizontal and vertical
axes are the x- and y-axes, respectively. The solid line is the section of the droplet surface in
xy-plane. Arrows show the velocity field inside the droplet. The gas flow comes from the
left side of the panel. The panel (a) shows the initial condition for the calculation. The panel
(b) shows a snapshot at t = 0.55 msec. The droplet begins to be deformed due to the gas
ram pressure. The fluid elements at the surface layer, which is directly facing the gas flow,
are blown to the downstream. In contrast, the velocity at the center of the droplet turns to
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Fig. 8. Time evolution of molten droplet exposed to the gas flow. The gas flow comes from
the left side of panels. We use pfm = 104 dyn cm−2, r0 = 500 ¯m, and μd = 1.3 poise for
calculations.

upstream of the gas flow because the apparent gravitational acceleration takes place in our
coordinate system. The droplet continues to be deformed further, and after t = 1.0 msec, the
degree of deformation becomes maximum (see panel (c)). After that, the droplet begins to
recover its shape to the sphere due to the surface tension. The recovery motion is not all but
almost over at the panel (d). The droplet repeats the deformation by the ram pressure and the
recovery motion by the surface tension until the viscosity dissipates the internal motion of the
droplet.

Fig. 9 shows the time variation of axial ratio c/b of the droplet. Each curve shows the
calculation result for the different value of the ram pressure pfm. The droplet is compressed
unidirectionally by the gas flow, so the length of minor axis c corresponds to the half
length of droplet axis in the direction of the gas flow. The axial ratio c/b is unity at the
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Fig. 9. Vibrational motions of molten droplet; the deformation by the ram pressure and the
recovery motion by the surface tension. The horizontal axis is the time since the ram pressure
begins to affect the droplet and the vertical axis is the axial ratio of the droplet c/b. Each
curve shows the calculation result for the different value of the ram pressure pfm. We use
r0 = 500 ¯m and μd = 1.3 poise for calculations.

beginning because the initial droplet shape is a perfect sphere. The axial ratio decreases as
time goes by because of the compression. After about 1 msec, c/b reaches minimum and
then increases due to the surface tension. After this, the axial ratio vibrates with a constant
frequency and finally the vibrational motion damps due to viscous dissipation. The calculated
frequency of the vibrational motion is about 2 msec not depending on pfm. The calculated
frequency is consistent with that of a capillary oscillations of a spherical droplet given by

Pvib = 2π
√

ρdr3
0/8γs ≈ 2.15 msec (Landau & Lifshitz, 1987).

4.2 Overdamping

Fig. 10 shows the time variation of the axial ratio c/b when the viscosity is 100 times larger
than that in Fig. 9. It is found that the axial ratio converges on the value at steady state without
any vibrational motion. This is an overdamping due to the strong viscous dissipation.

4.3 Effect of droplet rotation

We carried out the hydrodynamics simulations of non-rotating molten droplet in previous
sections. However, the rotation of the droplet should be taken into consideration as the
following reason. A chondrule before melting is an aggregate of numerous fine particles,
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Fig. 10. Same as Fig. 9 except of μd = 100 poise.

so the shape is irregular in general. The irregular shape causes a net torque in an uniform
gas flow. Therefore, it is naturally expected that the molten chondrule also rotates at a certain
angular velocity.

The angular velocity ω f can be roughly estimated by Iω f ≈ NΔt, where I is the moment of
inertia of chondrule and Δt is the duration to receive the net torque N. Assuming that the
small fraction f of the cross-section of the precursor contributes to produce the net torque
N, we obtain N ≈ f πr3

0 pfm. We can set Δt ≈ π/ω f (a half-rotation period) because the
sign of N would change after half-rotation. Substituting I = (8/15)πr5

0ρd, which is the
moment of inertia for a sphere with an uniform density ρd, we obtain the angular velocity
(Miura, Nakamoto & Doi, 2008)

ω f ≈
√

15 f πpfm/8r2
0ρd

= 140
(

f
0.01

)1/2 ( pfm

104 dyn cm−2

)1/2 ( r0

1 mm

)−1
rad s−1. (34)

Therefore, in the shock-wave heating model, the droplet should be rotating rapidly if most of
the angular momentum is maintained during melting.

In addition, it should be noted that the rotation axis is likely to be perpendicular to the
direction of the gas flow unless the chondrule before melting has a peculiar shape as windmill.

Fig. 11 shows the deformation of a rotating droplet in gas flow in a three-dimensional view.
The rotation axis is set to be perpendicular to the direction of the gas flow. We use μd =
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Fig. 11. Three-dimensional view of a rotating molten droplet exposed to a high-velocity gas
flow. The object shows the external shape of the droplet (iso-surface of the color function of
φ = 0.5). The gas flow comes from the left side (arrow). The rotation axis of the droplet is
perpendicular to the direction of the gas flow. After t = 1.0 sec, the droplet shape becomes a
prolate. We use μd = 103 poise, pfm = 104 dyn cm−2, ω = 100 rad s−1, and r0 = 1 mm.

103 poise, pfm = 104 dyn cm−2, ω = 100 rad s−1, and r0 = 1 mm. It is found that the droplet
elongates in a direction of the rotation axis as the time goes by. Fig. 12 shows the time variation
of the axial ratios b/a (solid) and c/b (dashed). The major axis a corresponds to the droplet
radius in a direction of the gas flow, so the decrease of b/a means the droplet elongation. The
axial ratio b/a reaches a steady value of 0.76 after 1 sec. The axial ratio c/b is kept at a constant
value of ≈ 0.95 during the calculation, which means that two droplet radius perpendicular to
the rotation axis is almost uniform. The droplet shape at the steady state is prolate, in other
words, a rugby-ball-like shape.

4.4 Origin of prolate chondrule

Why did the droplet shape become prolate? The reason, of course, is due to the droplet
rotation. If there is no rotation on the droplet, its shape is only affected by the gas which
comes from the fixed direction (see Fig. 13a). In this case, the droplet shape becomes disk-like
(oblate) shape because only one axis, which corresponds to the direction of the gas flow,
becomes shorter than the other two axes (Sekiya et al., 2003). In contrast, let us consider
the case that the droplet is rotating. If the rotation period is much shorter than the viscous
deformation timescale, the gas flow averaged during one rotation period can be considered to
be axis-symmetrical about the rotation axis (see Fig. 13b). Therefore, the droplet shrinks due to
the axis-symmetrical gas flow along directions perpendicular to the rotation axis and becomes
prolate if the averaged gas ram pressure is strong enough to overcome the centrifugal force.

Doi (Doi, 2011) derived the analytic solution of deformation of a rotating droplet in gas flow
in a case that the gas flow can be approximated as axis-symmetrical around the rotation axis
as shown in Fig. 13(b). He considered that the droplet radius is given by r(θ) = r0 + r1(θ),
where r0 is the unperturbed droplet radius and r1 is the deviation from a perfect sphere. θ is
the angle between the position (the origin is the center of the droplet) and the rotation axis.
According to his solution, the droplet deformation is given by

r1(θ)

r0
=

We

12

(
19
20

− R
)

P2(cos θ), (35)
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Fig. 12. Time evolutions of axial ratios b/a and c/b in the case of Fig. 11.

Fig. 13. The reason why the rotating droplet exposed to the gas flow is deformed to a prolate
shape is illustrated. (a) If the droplet does not rotate, it is deformed only by the effect of the
gas ram pressure. (b) If the droplet rotates much faster than the deformation due to the gas
flow, the time-averaged gas flow can be approximated as axis-symmetrical around the
rotation axis.
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where We (Weber number) is the ratio of the ram pressure of the gas flow to the surface tension
of the droplet defined as

We =
pfmr0

γs
, (36)

R is the ratio of the centrifugal force to the ram pressure defined as

R =
ρdr2

0ω2

pfm
, (37)

ω is the angular velocity of the rotation, and Pl(cos θ) is Legendre polynomials. This solution
is applicable under the assumption of r1 � r0. Eq. (35) shows that the particle radius becomes
the maximum at θ = 0, and minimum at θ = π/2. R = 19/20 is a critical value for the droplet
shape to be prolate (R < 19/20) or oblate (R > 19/20). The droplet shape is sphere when
R = 19/20 because the ram pressure balances with the centrifugal force.

Fig. 14 shows the droplet shape as functions of the Weber number We and the normalized
centrifugal force R using Eq. (35). R = 19/20 (vertical dashed line) is a critical value for the
droplet shape to be prolate (R < 19/20) or oblate (R > 19/20). In the prolate region, the
axial ratio b/a is less than unity for We > 0 as shown by contours, but c/b = 1. On the other
hand, in the oblate region, the axial ratio c/b is less than unity for We > 0, but b/a = 1. As
We increases, the degree of deformation increases as shown in decrease of axial ratio b/a or
c/b. The blue and red regions show ranges of axial ratios of group-A spherical chondrules
and group-B prolate chondrules, respectively. We carried out the hydrodynamics simulations
for a wide range of parameters and displayed on this diagram by symbols. It is found that
the hydrodynamics simulation results show a good agreement with the analytic solution for
a wide range of We and R.

Let us consider the shape of chondrule expected from the shock-wave heating model.
Adopting ram pressure of the gas flow of pfm = 104 dyn cm−2 and the radius of chondrule
of r0 = 1 mm, we obtain We = 2.5 for γs = 400 erg cm−2. According to Eq. (34), we
evaluate R = 0.06 for f = 0.01. The evaluated value of R is smaller than the critical value
of 19/20, so the expected droplet shape is prolate. In addition, the axial ratio b/a comes into
a range of group-B prolate chondrules (see Fig. 14). This suggests that the origin of group-B
prolate chondrules can be explained by the shock-wave heating model. Of course, it should be
noted that the shock-wave heating model does not reproduce the group-B prolate chondrules
for arbitrary conditions because We and R depend on many factors, e.g., pfm, r0, and f .
Namely, it is possible that different shock conditions produce different chondrule shapes,
even out of the range of group-A or -B. This fact, on the contrary, indicates that the chondrule
shapes constrain shock conditions suitable for formation of these chondrules. The data of
three-dimensional chondrule shapes measured by Tsuchiyama et al. (Tsuchiyama et al., 2003)
is definitely valuable, however, the number of samples is twenty at most. We need more data
to constrain the chondrule formation mechanism from their three-dimensional shapes.

5. Fragmentation

5.1 Direct fragmentation

When the droplet size is too large for the surface tension to keep the droplet shape against the
gas ram pressure, the fragmentation will occur. Fig. 15 shows the three-dimensional views of
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Fig. 14. Shapes of rotating droplets in gas flow. The horizontal axis is the centrifugal force
normalized by ram pressure of the gas flow R. The vertical axis is the Weber number We.
R = 19/20 (vertical dashed line) is a critical value for the droplet shape to be prolate
(R < 19/20) or oblate (R > 19/20). Solid lines are contours of axial ratios of b/a (R < 19/20)
or c/b (R > 19/20). A ranges of axial ratios of chondrules are shown by colored regions for
group-A spherical chondrules (blue) and for group-B prolate chondrules (red), respectively.
Symbols are results of hydrodynamics simulations (see legends in figure). Grayed region
shows a condition in which the droplet will be fragmented by rapid rotation.

the break-up droplet. The droplet radius is r0 = 2 cm, which corresponds to We = 20. The gas
flow comes from the left side of the view along the x-axis. It is found that the droplet shape is
deformed as the time goes by (panels (a) and (b)), and leads to fragmentation (panel (c)). The
parent droplet breaks up to many smaller pieces.

Susa & Nakamoto (Susa & Nakamoto, 2002) suggested that the fragmentation of the droplets
in high-velocity gas flow limits the sizes of chondrules (upper limit). They considered the
balance between the surface tension and the inhomogeneity of the ram pressure acting on
the droplet surface, and derived the maximum size of molten silicate dust particles above
which the droplet would be destroyed by the ram pressure of the gas flow using an order
of magnitude estimation. In their estimation, they adopted the experimental data in which
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Fig. 15. Three-dimensional view of the fragmentation of molten droplet. We use
μd = 1 poise, pfm = 4000 dyn cm−2, and r0 = 2 cm. The calculation was performed on a
100 × 100 × 100 grid.

the droplets suddenly exposed to the gas flow fragment for We >∼ 6 (Bronshten, 1983, p.96).
This results into the fragmentation of droplet for r0 >∼ 6 mm if we adopt our calculation
conditions: pfm = 4000 dyn cm−2 and γs = 400 dyn cm−1. Our hydrodynamics simulations
agree with the criterion for fragmentation.

5.2 Fragmentation via cavitation

Fig. 16 shows the internal pressure inside the droplet for various droplet sizes: r0 = 3, 4, and
5 mm from panels (a) to (c). We use μd = 1.3 poise and pfm = 4000 dyn cm−2. These droplets
reach steady states, so their hydrodynamics do not change significantly after these panels. We
found a high pressure region at the front of the droplet, and low pressure regions at centers
of eddies in all cases. The high pressure is due to the ram pressure of the gas flow. The
low pressure in eddy is clearly due to the non-linear effect caused by the advection term in
Eq. (2). Surprisingly, the pressure in eddy decreases to almost zero in panels (b) and (c). In the
“zero"-pressure region, the vaporization (or boiling) of the liquid would take place because the
vapor pressure of the liquid exceeds the internal pressure. This phenomenon is well known as
cavitation. We did not take into account the cavitation in our simulations, so no vaporization
occurred in the calculation. If the cavitation was taken into consideration, the eddies are no
longer maintained because of the cavitation, which would cause the fragmentation of the
droplet.

Miura & Nakamoto (Miura & Nakamoto, 2007) proposed the condition for the “zero"-pressure
region to appear by considering the balance between the centrifugal force and the pressure
gradient force around eddies as ρdv2

circ/reddy ≈ p/reddy, where vcirc is the fluid velocity
around the eddy, reddy is the radius of the eddy, and p is the pressure inside the droplet.
Substituting p = 2γs/r0 from the Young-Laplace equation and vcirc ≈ vmax = 0.112pfmr0/μd
(Sekiya et al., 2003), we obtain

r0,cav ≈
(

2γsμ2
d

0.1122ρd p2
fm

)1/3

. (38)

This equation gives the critical radius of the droplet above which the cavitation takes place
in the center of the eddy. We obtain r0,cav = 1.3 mm for the calculation condition. In our
hydrodynamic simulations, we observed the “zero"-pressure region for r0 = 4 mm or larger.
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Fig. 16. Internal pressure inside droplet for different droplet radius r0: (a) 3 mm, (b) 4 mm,
and (c) 5 mm. The pressure at a region surrounded by a white line decreases to almost zero
by the eddy. We use μd = 1.3 poise and pfm = 4000 dyn cm−2.

The inconsistency of cavitation criterion between hydrodynamics simulation and Eq. (38)
might come from the fact that we substitute the linear solution into vcirc. The Sekiya’s solution
did not take into account the non-linear term in the Navier-Stokes equation. On the other
hand, the cavitation would be caused by the non-linear effect. The substitution of the linear
solution into the non-linear phenomenon might be a reason for the inconsistency. However,
Eq. (38) provide us an insight of the cavitation criterion qualitatively.

5.3 Comparison with chondrule properties

It was found from the chondrule size distribution (see Fig. 3) that chondrules larger than
a few mm in radius are very rare. The origin of the chondrule size distribution has been
considered as some size-sorting process prior to chondrule formation in the early solar gas
disk (Teitler et al., 2010, and references therein). On the other hand, in the framework of
the shock-wave heating model, the upper limit of chondrule sizes can be explained by the
fragmentation of a molten chondrule in high-velocity gas flow. The criterion of fragmentation
is given by We = pfmr0/γs ≈ 6. Since the ram pressure of the gas flow is typically
pfm ≈ 103 − 105 dyncm−2, we obtain the upper limit of chondrule sizes as rmax ≈ 0.2− 20 mm.
This is consistent with the fact that chondrules larger than a few mm in radius are very rare.

In addition, our hydrodynamics simulations show a new pathway to the fragmentation by
cavitation. The cavitation takes place for We < 6 if viscosity of the molten chondrule is
small. The viscosity decreases rapidly as temperature of the droplet increases. This suggests
the following tendency: chondrules that experienced higher maximum temperature during
melting have smaller sizes that that experienced lower maximum temperature. On the other
hand, the data obtained by Nelson & Rubin (Nelson & Rubin, 2002) showed the tendency
opposite from our prediction. They considered the reason of the difference in mean sizes
among chondrule textural types being due mainly to parent-body chondrule-fragmentation
events and not to chondrule-formation processes in the solar nebula. Therefore, to date,
there is no evidence regarding the dependence of chondrule sizes on the maximum
temperature. The relation between the chondrule sizes and the maximum temperature should
be investigated in the future.
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How about the distribution of sizes smaller than the maximum one? Kadono and
his colleagues carried out aerodynamic liquid dispersion experiments using shock tube
(Kadono & Arakawa, 2005; Kadono et al., 2008). They showed that the size distributions
of dispersed droplets are represented by an exponential form and similar form to that of
chondrules. In their experimental setup, the gas pressure is too high to approximate the gas
flow around the droplet as free molecular flow. We carried out the hydrodynamics simulations
of droplet dispersion and showed that the size distribution of dispersed droplets is similar to
the Kadono’s experiments (Yasuda et al., 2009). These results suggest that the shock-wave
heating model accounts for not only the maximum size of chondrules but also their size
distribution below the maximum size.

In addition, we recognized a new interesting phenomenon relating to the chondrule
formation: the droplets dispersed from the parent droplet collide each other. A set of droplets
after collision will fuse together into one droplet if the viscosities are low. In contrary, if
the set of droplets solidifies before complete fusion, it will have a strange morphology that
is composed of two or more chondrules adhered together. This is known as compound
chondrules and has been observed in chondritic meteorites in actuality. The abundance
of compound chondrules relative to single chondrules is about a few percents at most
(Akaki & Nakamura, 2005; Gooding & Keil, 1981; Wasson et al., 1995). The abundance sounds
rare, however, this is much higher comparing with the collision probability of chondrules in
the early solar gas disk, where number density of chondrules is quite low (Gooding & Keil,
1981; Sekiya & Nakamura, 1996). In the case of collisions among dispersed droplets, a high
collision probability is expected because the local number density is high enough behind the
parent droplet (Miura, Yasuda & Nakamoto, 2008; Yasuda et al., 2009). The fragmentation
of a droplet in the shock-wave heating model might account for the origin of compound
chondrules.

6. Conclusion

To conclude, hydrodynamics behaviors of a droplet in space environment are key processes
to understand the formation of primitive materials in meteorites. We modeled its
three-dimensional hydrodynamics in a hypervelocity gas flow. Our numerical code based on
the CIP method properly simulated the deformation, internal flow, and fragmentation of the
droplet. We found that these hydrodynamics results accounted for many physical properties
of chondrules.
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1. Introduction

The flow in cavities studies the dynamics of motion of a viscous fluid confined within a cavity
in which the lower wall has a horizontal motion at constant speed. There exist two important
reasons which motivate the study of cavity flows. First is the use of this particular geometry as
a benchmark to verify the formulation and implementation of numerical methods and second
the study of the dynamics of the flow inside the cavity which become very particular as the
Reynolds (Re) number is increased, i.e. decreasing the fluid viscosity.
Most of the studies, concerning flow dynamics inside the cavity, focus their efforts on the
steady state, but very few study the mechanisms of evolution or transients until the steady
state is achieved (Gustafson, 1991). Own to the latter aproach it was considered interesting
to understand the mechanisms associated with the flow evolution until the steady state is
reached and the steady state per se, since for different Re numbers (1,000 and 10,000) steady
states are ”similar” but the transients to reach them are completely different.
In order to study the flow dynamics and the evolution mechanisms to steady state the Lattice
Boltzmann Method (LBM) was chosen to solve the dynamic system. The LBM was created
in the late 90’s as a derivation of the Lattice Gas Automata (LGA). The idea that governs
the method is to build simple mesoscale kinetic models that replicate macroscopic physics
and after recovering the macro-level (continuum) it obeys the equations that governs it i.e.
the Navier Stokes (NS) equations. The motivation for using LBM lies in a computational
reason: Is easier to simulate fluid dynamics through a microscopic approach, more general
than the continuum approach (Texeira, 1998) and the computational cost is lower than other
NS equations solvers. Also is worth to mention that the prime characteristic of the present
study and the method itself was that the primitive variables were the vorticity-stream function
not as the usual pressure-velocity variables. It was intended, by chosing this approach, to
understand in a better way the fluid dynamics because what characterizes the cavity flow
is the lower wall movement which creates itself an impulse of vorticiy which is transported
within the cavity by diffusion and advection. This transport and the vorticity itself create the
different vortex within the cavity and are responsible for its interaction.
In the next sections steady states, periodic flows and feeding mechanisms for different Re
numbers are going to be studied within square and deep cavities.

17
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2. Computational domains

The flow within a cavity of height h and wide w where the bottom wall is moving at constant
velocity U0 Fig.1 is going to be model. The cavity is completely filled by an incompresible
fluid with constant density ρ and cinematic viscosity ν.

Fig. 1. Cavity

3. Flow modelling by LBM with vorticity stream-function variables

Is important to introduce the equations that govern the vorticity transport and a few
definitions that will be used during the present study.

Definition 0.1. A vortex is a set of fluid particles that moves around a common center

The vorticity vector is defined as ω = ∇× v and its transport equation is given by

∂ω

∂t
+ [∇ω]v = [∇v]ω + ν∇2ω. (1)

which is obtained by calculating the curl of the NS equation. For a 2D flow Eq.(1) is simplified
to obtain

∂ω

∂t
+ [∇ω]v = ν∇2ω. (2)

In order to recover the velocity field from the vorticity field the Poisson equation for the stream
function needs to be solved. The Poisson equation wich involves the stream function is stated
as

∇2ψ = −ω (3)

where ψ is the stream function who carries the velocity field information as

u =
∂ψ

∂y
, v = − ∂ψ

∂x
. (4)

and ensures the mass conservation. The motivation for adopting vorticity as the primitive
variables lies in the fact that every potential, as the pressure, is eliminated which is physicaly
desirable because being the vorticity an angular velocity, the pressure, which is always normal
to the fluid can not affect the angular momentum of a fluid element.
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3.1 Numerical method
Consider a set of particles that moves in a bidimensional lattice and each particle with a finite
number of movements. Now a vorticity distribution function gi(x, t) will be asigned to each
particle with unitary velocity ei giving to it a dynamic consistent with two principles:

1. Vorticity transport

2. Vorticity variation in a node own to particle collision

Fig. 2. D2Q5 Model.2 dimensions and 5 possible directions of moving

Observation 0.2. The method only considers binary particle collisions.

The evolution equation is discribed by

gk(�x + c�ekΔt, t + Δt)− gk(�x, t) = − 1
τ
[gk(�x, t)− geq

k (�x, t)]1 (5)

where ek are the posible directions where the vorticity can be transported as shown in Fig.2.
c = Δx/Δt is the fluid particle speed, Δx and Δt the lattice grid spacing and the time step
respectively and τ the dimensionless relaxation time. Clearly Eq.(5) is divided in two parts,
the first one emulates the advective term of (1) and the collision term, which is in square
brackets, emulates the diffusive term of equation (1).
The equilibrium function is calculed by

geq
k =

w
5
[
1 + 2.5

�ek · �u
c

]
. (6)

The vorticity is calculed as
w = ∑

k≥0
gk (7)

and τ, the dimensionless relaxation time, is determined by Re number

Re =
5

2c2(τ − 0.5)
. (8)

1 The evolution equations were taken from (Chen et al., 2008) and (Chen, 2009). Is strongly recomended
to consult the latter references for a deeper understanding of the evolution equations and parameter
calculations.
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In order to calculate the velocity field Poisson equation must be solved (3). In order to do this
(Chen et al., 2008) introduces another evolution equation.

fk(�x + c�ekΔt, t + Δt)− fk(�x, t) = Ωk + Ω̂k. (9)

Where
Ωk =

−1
τψ

[ fk(�x, t)− f e
k q(�x, t)], Ω̂k = ΔtξkθD (10)

and D = c2

2 (0.5 − τψ). τψ is the dimensionless relaxation time of the latter evolution equation
wich can be chosen arbitrarly. For the sake of understanding the evolution equations, the
equation (9) consist on calculating Dψ

Dt = ∇2ψ + ω until Dψ
Dt = 0, having found a solution ψ

for the Poisson equation.
By last, the equlibrium distribution function is defined as

f eq
k =

{
ζkψ k = 1, 2, 3, 4
−ψ k = 0 (11)

where ξk and ζk are weight parameters of the equation.

3.2 Algorithm implementation
In order to implement the evolution equation Eq.(5) two main calculations are considered.
First, the collision term is calculated as

gint
k = − 1

τ
[gk(�x, t)− geq

k (�x, t)] (12)

and next the vorticity distributions is transported as

gk(�x + c�ekΔt, t + Δt) = gint
k + gk(�x, t) (13)

which is, as mentioned, the basic concept that governs the LBM, collisions and transportation
of determined distribution in our case a vorticity distibution.

3.2.1 Algorithm and boundary conditions
1. Paramater Inicialization

• Moving wall velocity: U0 = 1.
• ψ|∂Ω = 0, own to the fact that no particle is crossing the walls.
• u = v = 0 in the whole cavity excepting the moving wall.
• Re number definition2

2. Wall vorticity calculation

ω|∂Ω =
7ψw − 8ψw−1 + ψw−2

2Δn2 (14)

ω|∂Ω =
7ψw − 8ψw−1 + ψw−2

2Δn2 − 3U0
Δn

(15)

Both equations came from solving Poisson equation Eq.(3) on the walls by a second order
Taylor approximation. Eq.(15) is used on the moving wall nodes.

2 For the sake of clarity Re number is imposed in the method by the user which intrinsically is imposing
different flow viscosities.
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3. Velocity field calculation using Eq.(4)

4. Equilibrium probability calculation using Eq.(6)

5. Colission term calculation using Eq.(12)

6. Probability transport using Eq.(13)

7. Vorticity field calculation using Eq.(7)

8. Solution of Poisson equation: In order to solve Poisson equation the evolution equation
Eq.(9) for the stream-function distribution was implemented within a loop wishing to
compare fk’s values (i.e. ψ) aiming to achive that Dψ

Dt = ∇2ψ + ω = 0. For the latter
loop the process terminated when

∑
x,y

| f+k − fk| < 10−3.

While the simulations were ran, it was found that the algorithm was demanding finer meshes
for higher Re numbers, i.e. 700x700 nodes mesh for Re 6,000, increasing the computational
cost and most of the times ending in overflows own to the fluid regime. To overcome this
situations a turbulence model was introduced to the LBM proposed by (Chen, 2009).

4. Introduction of turbulence in LBM

The principal characteristic of a turbulent flow is that its velocity field is of random nature.
Considering this, the velocity field can be split in a deterministic term and in a random term
i.e. U(x, t) = Ū(x, t) + u(x, t), being the deterministic and random term respectively. In order
to solve the velocity field, the NS equations are recalculated in deterministic variables adding
to the set a closure equation own to the loss of information undertaken by solving only the
deterministic term. At introducing a turbulent model there exist three different approaches:
algebraic models, closure models and Large Eddy Simulations (LES) being the latter used in
the present study. LES were introduce by James Deardorff on 1960 (Durbin & Petersson-Rief,
2010). Such simulations are based in the fact that the bulk of the system energy is contained
in the large eddys of the flow making not neccesary to calculate all the vortex disipative range
which would imply a high computational cost (Durbin & Petersson-Rief, 2010). If small scales
are ommited, for example by increasing the spacing by a factor of 5, the number of grid
points is substantially reduced by a factor of 125 (Durbin & Petersson-Rief, 2010). In LES
context the elimination of these small scales is called filtering. But this filtering or omission
of small scales is determined as follows: the dissipative phenomenon is replaced by an
alternative that produces correct dissipation levels without requiring small scale simulations.
The Smagorinsky model was introduced where another flow viscosity (usually known as
subgrid viscosity) is considered which is calculated based on the fluid deformation stress.
Specifically it is model as νt = (CΔ)2|S|Chen et al. (2008) where

Sij =
1
2

(
∂Ūi
∂xi

+
∂Ūj

∂xj

)
,

Δ is the filter width and C the Smagorinsky constant. In the present study C = 0.1 and Δ = Δx.
Assuming this new subgrid viscosity νt the momentum equation is given by

∂ω

∂t
+ [∇ω]v =

∂

∂x

(
νe

∂ω

∂x

)
+

∂

∂y

(
νe

∂ω

∂y

)
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where
νe = νt + ν.

As the transport equation has changed, the LBM evolution equation has also changed

gk(�x + c�ekΔt, t + Δt)− gk(�x, t) = − 1
τe
[gk(�x, t)− geq

k (�x, t)] (16)

where

τe = τ +
5(CΔ)2|S|

2c2Δt
and |S| = |ω|3.

Having a new evolution equation Eq.(16) the algorithm has to be modified adding a new
step where τe is calculated based on the vorticity field. After making this improvement to the
method, the algorithm began to work eficiently allowing to achive higher Re numbers without
compromising the computer cost, justifing the use of a LBM.

5. Steady state study for different Re numbers

It is said that the flow has reached steady state when collisions and transport do not affect
each node probability. Concerning the algorithm it was considered that the flow had reached
the steady state when its energy had stabilized and when the maps of vorticity and stream
function showed no changes through time.
Steady state vortex configuration for Re 1,000 and Re 10,000 is shown in Fig.3. It worth to
notice that both are very similar, a positive vortex that fills the cavity and two negative vortices
at the corners of the cavity. This configuration was observed from Re 1,000 to Re 10,000 being a
prime characteristic of cavity flows. It is also important to clarify that for Re 10,000 the steady
state presents a periodicity which is located in the upper left vortex that we shall see later,
indeed Fig.3(b) is a ”snapshot” of the flow.

(a) Stream-function map in steady state
for Re 1,000.

(b) Stream-function map in steady state
for Re 10,000.

Fig. 3. Steady states. Maps were taken at 100,000 and 110,000 iterations respectively.

3 Is strongly recomended to consult (Chen, 2009) for a deeper understanding of the evolution equations
and parameter calculations.
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5.1 Deep cavities
Several studies have proposed to study the deep cavity geometry (Gustafson, 1991; Patil et al.,
2006) but none has reached to simulate high Re numbers possibly because the mesh sizes. Due
to the LBM low computational cost it was decided to present the study of a deep cavity with
an aspect ratio (AR) of 1.5 for Re 8,000.

5.1.1 Vortex dynamics
A general description is presented emphasizing the most important configurations through
evolution to steady state:

• Step 1 Fig.4(a) The positive vortex creates a negative vortex that arises from the right wall
triggering an interaction since the begining of the evolution.

• Step 2 Fig.4 (b) The negative vortex that arises from the right wall has taken the whole
cavity confining the positive vortex to the bottom.

• Step 3 Fig.4(c,d) Positive vortices have joined in one by an interesting process discribed in
Sec6. This union creates a ”mirror” phenomenon inside the cavity.

• Step 4 Fig.4(e) The positive vortex expands into the cavity moving upward the negative
vortex until the steady state is reached in which both vortices occupy the same space of the
cavity. Is worth to notice that this vortex distribution is not achieved in the square cavity
steady state.

5.1.2 Mirror phenomenon
During the evolution it was observed that after positive vortices joined (Fig.4(c, d)) the new
big positive vortex acted as a moving wall for the negative vortex injecting vorticity to it.
Reproducing the behavior seen in the square cavity, now by the negatie vortex. Ergo a quasi
square cavity was created in the top of the cavity but instead having a moving wall it had a
vortex. The phenomenon is shown in Fig.5 where it is clear that the top of the deep cavity is
a ”reflection” of the square cavity with respect to an imaginary vertical axis drawn between
these two.

6. Vortex binding

A particular process for Re 10,000 in square and deep cavities was found to take place through
evolution. This process occurs several times throughout evolution, named Vortex Binding.
In this process isolated vortices get connected forming a ”massive” vortex which eventually
will configure the steady state vortices distribution. A binding process that occured through
evolution is shown in Fig.6 binding a positive vortex that appeared in the upper right corner
with the positive vortex that came from the movement of the bottom wall.
In order to explain the binding process, which is illustrated in Fig.6, recall the vorticity
transport equation Eq.(1). The transport equation is divided in two terms that dictate the
transport of vorticity, the diffusive term ν∇2ω and the advective term [∇ω]v. For a high Re
number flow the diffusive term can be neglected, turning the attention in the advective term.
As the flow evolved it was seen that the vorticity and stream-function contour lines tended to
align as shown in Fig.7(a) making the vorticity gradient vector and velocity vector orthogonal
at different places (Fig.7(a)) causing [∇ω]v = 0, i.e. no vorticity transport.
As shown in Fig.7(b) vorticity contour lines started to curve, due to its own vorticity, crossing
with the stream-function contour lines and making [∇ω]v �= 0. In Fig.7(b)can be seen that
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Fig. 4. Stream-function map for different times through evolution for a cavity with AR=1.5
and Re 8,000 in a 200x300 nodes mesh. a,b,c,d and e were taken at 20,000, 50,000, 150,000,
180,000 and 260,000-340,000 iterations.
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Fig. 5. Left Stream-function map for Re 8,000 in a cavity with AR=1.5 (200x300 nodes) Right
Stream-function map in a square cavity for Re 8,000 (200x200 nodes).

Fig. 6. Stream-function maps for Re 10,000 were Vortex binding process take place. Four
maps were taken between 80,000 and 90,000 iterations

the vorticity gradient and the velocity vector are no longer orthogonals creating vorticity
transport in different places which made possible the vortex binding to take place.

7. Periodicity in cavity flows

In the study of dynamic systems, being the case of the present study the NS equations,
and their solutions there exist bifurcations leading to periodic solutions. Specifically in
cavity flows, when the Re number is increased, such bifurcations take place known as
Hopf Bifurcations. Willing to understand how this Bifurcation takes place the Sommerfelds
infinitesimal perturbation model is introduced. This perturbation model considers a small
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(a) Upper right corner (nodes: 100:200 x
80:200).Taken at 80,000 iterations

(b) Upper right corner (nodes: 100:200 x
80:200). Taken at 85,000 iterations

Fig. 7. Left Stream-function contour lines (Green), vorticity contour lines(Red), vorticity
gradient(Red), velocity vector(Black).Right Stream-function contour lines (Green), vorticity
contour lines(Red), vorticity gradient(Red), velocity vector(Black)and angle between [∇ω]
and v(Blue)

perturbation of the dynamical system in order to study the equilibrium state or the lack of it.
Let be considered the next dynamical system

dú
dt

= [Mν] ú. (17)

The solution of Eq.(17) lies on finding the eigenvectors of the [Mν] operator which is in
function of the fluid vicosity. Depending on the Re number the eigenvalues (and eigenvector)
can be complex i.e. λ ∈ C, leading to periodic solutions(Toro, 2006) or Bifurcations. In
(Auteri et al., 2002) the bifurcation for a cavity flow was located between 8017,6 and 8018,8
(Re numbers) but since 1995 (Goyon, 1995) reported the existence of particular periodic flow
located in the upper left corner of a square cavity. In order to find the flow periodicity for Re
10,000 and determine if the system had reached its asymptotic state the system energy was
used as a measure. A Periodic flow for a deep cavity is shown in Fig.84

8. Flow transients

Studying vorticity and stream-function maps was found that the way to get to the same state
in most of the flow (Fig.3(a) and Fig.3(b)), with the exception of the corners for Re 10,000
which oscillate, change significantly as the number of Re varies. In order to illustrate this
”bifurcation” vorticity transients for Re 1,000 and Re 10,000 are shown in Figs.9, 10 and 11
until steady state configuration is reached.

8.1 Transient description
For Re 1,000 the positive vortex is created on the lower right corner by the bottom wall
movement. Latter vortex is feeded and grows until the whole cavity is taken cornering

4 A well discribed periodic flow for square cavity can be found in (Goyon, 1995).
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and breaking a negative vortex that has accompanied it since the beginning of evolution
without qualitative form changes, only scaling the first configuration until the steady state
configuration is achieved in Fig.3(a).

Fig. 8. Stream-function maps for a deep cavity with AR=1.5 and Re 8,000 where periodic flow
take place. Maps were taken between 300,000 and 309,000 iterations. White patches are vortices
with high absolute vorticity. Cavity upper right corner (100:200x100:300) nodes, see
Fig.4(e-right)

For Re 10,000 the positive vortex is created due to the lower wall movement and immediately
itself creates a negative vortex coming from the right wall. Unlike Re 1,000 these two
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Fig. 9. Vorticity maps: Positive vorticiy (Blue), Negative vorticity(Red) (200x200 nodes
mesh). The nine maps were taken at 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000,
80,000, 100,000 and 110,000 iterations respectively.

vortices qualitatively change during evolution, changing size and shape until the stable state
configuration is reached shown in Fig.3(b).
It is worth to notice that vorticity maps for Re 1,000 and Re 10,000 are topologicaly very
different. For Re 1,000 no interaction between positive and negative vorticity is presented
but for Re 10,000 interaction is presented since the begining of evolution until the steady state
and in the steady state itself because what causes the flow periodicity is the interaction of
positive and negative vortices on the corners of the cavity.

9. Vortex feeding mechanisms

Cavity flow is a phenomenon characterized by a continuos vorticity injection to the system
induced by the moving wall. The vorticity arises because the no-slip condition (viscous fluid)
creating an impulse of vorticity that is transported into the cavity by advection or diffusion
Eq.(1). As seen since the beginning the vorticity transport equation is divided in a diffusive
term ν∇2ω ≈ 1

Re∇2ω and in an advective term [∇ω] v. At the beginning of the flow evolution
the vorticity input is transported from the wall purely by diffusion but as the flow evolves both
terms of the vorticity transport equation start to have different weights, being the diffusive
term the most sensitive to Re number variations.
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Fig. 10. Vorticity maps: Positive vorticiy (Blue), Negative vorticity(Red) (200x200 nodes
mesh). The twelve maps were taken from 10,000 to 60,000 iterations.

Fig. 11. Vorticity maps: Positive vorticiy (Blue), Negative vorticity(Red) (200x200 nodes
mesh). The nine maps were taken from 60,000 to 110,000 iterations.

Definition 0.3. A vorticity channel is a bondary layer, coming from a wall, that feeds and creates
vortex.
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9.1 Channel creation and some other characteristics
Channel creation is derived from two different phenomena: First is the energy transformation
that occurs in the wall because the system continually transforms translational energy into
rotational energy. Secondly a vortex whatever its sign is creates a channel of opposite sign.
In oder to understand the latter suppose a positive vortex near a wall. The vortex make
the particles that lie between it and the wall start spinning or rotate, due to viscosity, in the
opposite direction causing a vorticity input - in this case negative - to the system.
There are three important features on the channels. The first and most important is that
the channels transport vorticity from the walls inside the cavity and also diffuses vorticity
along the route to nearby channels in proportion to the existing vorticity gradient. Secondly
a positive channel always wraps a negative vortex and a negative channel always wraps a
positive vortex. And finally channel thickness is function of the Re number.

9.2 Channel study for Re 1,000
• Channel creation: The transient is shown in Fig.9. Since the beginning there is a feeding

channel from the right wall that grows merging in a left wall channel. It is worth noticing
that the channel wraps the positive vortex during evolution (Fig.12(a)) but never interacts
with it.

• Channel characteristics: In Fig.9 can be observed that the feeding channels are thick. This
ows to the fact the diffusive term of the transport equation is big enough to let vorticity be
spread within the fluid apart from being transported.

9.3 Channel study for Re 10,000
Before studying the channels it is worth to clarify that in Fig.10 and 11 channels are the thin
red ”tubes” and the color patches are formed vortices which are fed by channels.

• Channel creation: In the transient shown in Fig.10 can be seen since the beginning the
appearance of a feeding channel coming from the right wall, but unlike the Re 1,000
transient, it begins to feed a vortex (sixth square of transient Fig.10) that grows inside
the cavity. This vortex has the ability to interact in different ways (Fig.10 and 11) with the
positive vortex that eventually will take the cavity. What is interesting about the vortex
interaction, apart from the different forms that arise in the transient, is that the latter vortex
has as many vorticity as the positive one, allowing them to interact in many ways. This
interaction is able to produce a configuration seen in the deep cavity steady state where
both vortices occupy the cavity without cornering each other but highly unstable ( twelfth
square Fig.10). This occurs because the diffusive term of the transport equation has less
weigth, allowing to concentrate vorticity without being spread across the cavity, which is
the case for Re 1,000. It is also important to mention that for Re 10,000 negative channel
wraped positive vortex and vice versa (Fig.12(b)) as happens for Re 1,000.

• Channel characteristics: Unlike Re 1,000 channels the thickness of Re 10,000 channels are
smaller, due to the diffusive low weight term in the vorticity transport equation.

10. Circulation study for different Re numbers

In order to understand more about what is happening with the vorticity of the system was
decided to study the circulation behavior. The circulation is defined as Γ =

∫
ωdA. An

interesting aspect of the circulation is that, although it must be constant in the system over
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(a) Superposition for Re 1,000 during
evolution.

(b) Superposition for Re 10,000 during
evolution

Fig. 12. Stream-function contour lines (blue) and vorticity maps superposition. Left Positive
vorticity (Dark red) Negative vorticity (Light red), right Positive vorticity (Aqua) Negative
vorticity (Aquamarine).

time according to Kelvins theorem, it can be split into positive and negative values. As seen,
the prime characteristic of the flow is the positive vorticity input from the lower wall deriving
in positve circulation diferential.

(a) Square cavity circulation evolution. Positive
Γ (Red) and negative Γ (Blue)

(b) Square cavity circulation evolution. Positive
Γ (Red) and negative Γ (Blue)

Fig. 13. Left Square cavity circulation for Re 1,000. Right Square cavity circulation for Re
10,000.

In both figures can be seen that the flow reaches a maximum around the 100.000 iterations
when the positive vortex has taken all the cavity (Fig.3.1 and 3.2). What is interesting are the
values of circulation that are achieved for each value of Re (Table.1).
Several important things are shown in Table.1. First the circulation increase for Re 10,000 is
three times bigger than Re 1,000 i.e. ΔΓRe1,000 = 18.36 compared with ΔΓRe10,000 = 50.5.
Latter observation means that as the viscosity decreases the system is able to accumulate
more circulation. Finally, system circulation is consistent whit Kelvin’s theorem even though
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Re 1,000 Re 10,000

max min max min

Positive Γ 48.52 30.16 83.5 33
Negative Γ 23.8 3.09 60.67 2.55

Table 1. Circulation values comparison

positive circulation increases negative circulation increases too maintaining a circulation
differential of about 30 throughout evolution (Fig.13 a and b).

10.1 Why does the circulation fall after rising for Re 10,000?
It can be seen in Fig.13 that for Re 1,000 positive (negative) circulation reaches its maximum
(minimum) and stabilizes around latter value, which fails to happen for Re 10,000 where
circulation peaks at a ”constant” rate but after reaching maximum starts decreasing. The
motivation of this subsection is to explain why this change of slope took place (Fig.13(b)) and
try to predict it analiticaly because it was observed that for different Re numbers the same
change in slope occures reaching different values of maximum circulation.
In order to understand this phenomena recall that the cavity has vorticity channels that
feed and remove vorticity into and out the system affecting the circulation values. Having
mentioned this observation and due to the low weight diffusive term has in the transport
equation, dΓ

dt is calculed according to the gradient of vorticity on the walls (18), which is the
same as quantifying how much vorticity is entering and leaving the system.

dΓ
dt

=
∫

∂Ω
∇w · nds (18)

After ploting Eq.(18) through time it was found that dΓ
dt was constant until 100.000 iterations,

which is when the positive vortex has taken the cavity, reflecting the ”constant” increase of
circulation Fig.13(b). More interesting and contradicting the assumption made was that dΓ

dt
does not fall after the 100,000 iterations, situation that was expected since a slope change was
observed in the Fig.13(b) after 100,000 iterations. Willing to explain this behavior the following
hypothesis was proposed:
Assume a unit of vorticity entering to the system Fig.14.
This unit feeds the positive vortex. The vortex is not able to accumulate more circulation, as it
has reached the steady state configuration therefore this unit of vorticty has to be ”passed” to
each of the corner vortices, which also are not able to accumulate more circulation having to
pass it to the upper wall and balancing the accounts of vorticity on the walls. Since the way of
calculating the dΓ

dt is based on counting how much vorticity is entering and leaving the system
the circulation loss between vortice was not quantified, explaining why dΓ

dt remains constant.

11. Discussion and open questions

Through the present study was seen that viscosity is who decides if vorticity can travel
without diffusing itself, curl up, accumulate and form vortices. In a word is who decides
how will the flow evolves. The interesting thing is that after being so influential in the flow
pattern everything was in vain because the configuration of steady state regardless of the
number Re (100-10,000) is very similar, a positive vortex has taken the cavity and two or three
vortices were cornered. Latter observation trigger on of the most important remaining open
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Fig. 14. Vortex diagram

question for future studies, why after so many turns, so many games, the flow reaches the
same configuration?. It is believed that a study from game theory involving two players,
”positive vorticity” and ”negative vorticity” who fight a common good, the space of the
cavity, can clarify why the positive vortex end taking the whole cavity behavior that is not
achieved in the deep cavity scenario. Along with the latter question, other two remain open.
First would be to answer, why the configuration of stable state coincide when the system
can not store more vorticity and secondly why can not be achieved by the square cavit flow
the configuration that occurs to happen in the deep cavity between the positive and negative
knowing before that during the flow evolution this configuration is achieved but then lost.

12. Conclusions

Among all the results it was clearly seen the power and the preponderance of the viscosity in
the evolution of cavity flows, how it affects the dynamics of vortices, transient or evolution of
the flow and the accumulation or dissipation of energy. Was also observed the periodicity of
steady-state flow for both cavities being the first to show a complete cycle of periodicity in the
deep one. In conjunction with the above the feeding channels definition were proposed which
were key to understanding the transient flow. It was also proposed a transient ”Bifurcation”
since they vary dramatically as the number of Re is increased. This ”Bifurcation” is mainly
due to viscosity.
As for deep cavities in addition to finding the periodicity of the flow for Re 8.000 it was
presented an interesting phenomenon observed in Sec.5.1.2 where a quasi cavity is created
that replicates cavity flow transients that occur before reaching steady state in a square cavity.
Finally, the numerical method implemented, based on the equations presented in (Chen, 2009;
Chen et al., 2008), was a great help for the simplicity of its programming and its primitive
variable, vorticity, was central in the study.
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1. Introduction 
Quasicrystal as a new structure of solids as well as a new material, has been studied over 
twenty five years. The elasticity and defects play a central role in field of mechanical 
behaviour of the material, see e.g. Fan [1]. Different from crystals and conventional 
engineering materials, quasicrystals have two different displacement fields: phonon field 

1 2 3( , , )u u u u  and phason field 1 2 3( , , )w w w w , which is a new degree of freedom to 
condensed matter physics as well as continuum mechanics,  this leads to two strain tensors 
such as 
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We call the first of equation (1) as phonon strain tensor, the second as phason strain tensor, 
respectively. The corresponding stress tensor is ij  and ijH .  

The constitutive law is the so-called generalized Hooke’s law as follows 
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in which ijklC  denotes the phonon elastic tensor, ijklK  the phason one, and ijklR  the phonon-

phason coupling one, respectively. It is evident that the appearance of the new degree 
freedom yields a great challenge to the continuum mechanics. 
In the dynamic process of quasicrystals problem presents further complexity. According to 
the point of view of Lubensky et al. [2,3], phonon represents wave propagation, while 
phason represents diffusion in the dynamic process. Following the argument of Lubensky et 
al., Rochal and Lorman [4] and Fan [1,5] put forward the equations of motion of 
quasicrystals as follows 
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Equation (3) is the equation of motion of conventional elastodynamics, and equation (4) is 
the linearized equation of hydrodynamics of Lubensky et al., so equations (3), (4) are elasto-
hydrodynamic equations of quasicrystals. 
The equations (1)-(4) are the basis of dynamic analysis of quasicrystalline material.   

2. The elasto-hydrodynamics of two-dimensional decagonal quasicrystals 
and application to dynamic fracture 
2.1 Statement of formulation and sample problem 
Among over 200 quasicrystals observed to date, there are over 70 two-dimensional 
decagonal quasicrystals, so this kind of solid phases play an important role in the material. 
For simplicity, here only point group 10mm two-dimensional decagonal quasicrystals will 
be considered. We denote the periodic direction as the z  axis and the quasiperiodic plane as 
the x y  plane. Assume that a Griffith crack in the solid along the periodic direction, i.e., 
the z axis. It is obvious that elastic field induced by a uniform tensile stress at upper and 
lower surfaces of the specimen is independent of z , so ( )/ 0z   . In this case, the stress-
strain relations are reduced to 
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where 12 11 12, ( )/2L C M C C   are the phonon elastic constants, 1K and 2K are the phason 
elastic constants, R  phonon-phason coupling elastic constant, respectively.  
Substituting equations (5) into equations (3), (4) we obtain the equations of motion of 
decagonal quasicrystals as following: 
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where  

1
1 2 3 1
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Note that constants 1 2,c c and 3c have the meaning of elastic wave speeds, while 1d and 2d do 

not represent wave speed, and 2
1d and 2

2d  are diffusive coefficients in physical meaning. 
A decagonal quasicrystal with a crack is shown in Fig.1. It is a rectangular specimen with a 
central crack of length 2 ( )a t subjected to a dynamic or static tensile stress at its edges ED 
and FC, in which ( )a t represents the crack length being a function of time, and for dynamic 
initiation of crack growth, the crack is stable, so 0( ) constanta t a  , for fast crack 
propagation, ( )a t varies with time. At first we consider dynamic initiation of crack growth, 
then study crack fast propagation. Due to the symmetry of the specimen only the upper 
right quarter is considered. 
 

 
Fig. 1. The specimen with a central crack 

Referring to the upper right part and considering a fix grips case, the following boundary 
conditions should be satisfied:  

 

0, 0, 0, 0 on 0 for 0
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in which 0( ) ( )p t p f t  is a dynamic load if ( )f t  varies with time, otherwise it is a static load 
(i.e., if ( )f t const ), and 0p const  with the stress dimension.  . 
The initial conditions are 
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For implementation of finite difference all field variables in governing equations (6) and 
boundary-initial conditions (7), (8) must be expressed by displacements and their 
derivatives. This can be done through the constitutive equations (2). The detail of the finite 
difference scheme is omitted here but can be referred to Fan [1]. 
For the related parameters in this section, the experimentally determined mass density  for 
decagonal Al-Ni-Co quasicrystal 3 -34.186 10 g mm    is used and phonon elastic moduli 

are 12 2 12 2
11 122.3433 10 dyn/ cm , 0.5741 10 dyn/ cmC C     10 2(10 dyn/ cm GPa) which 

are obtained by resonant ultrasound spectroscopy, refer to Chernikov et al [6], we have also 
chosen phason elastic constants 12 2

1 1.22 10 dyn/ cmK   and 12 2
2 0.24 10 dyn/ cmK    

10 2(10 dyn/ cm GPa)  estimated by Monto-Carlo simulation given by Jeong and Steinhardt 

[7] and 19 3 10 31 / 4.8 10 m s/kg=4.8 10 cm μs /g-
w          which measured by de Boussieu 

and collected by Walz in his master thesis [8].The coupling constant R  has been measured for 
some special cases recently, see Chapter 6 and Chapter 9 of monograph written by Fan [1] 
respectively. In computation we take / 0.01R M   for coupling case corresponding to 
quasicrystals, and / 0R M   for decoupled case which corresponds to crystals. 

2.2 Examination on the physical model 
In order to verify the correctness of the suggested model and the numerical simulation, we 
first explore the specimen without a crack. We know that there are the fundamental 
solutions characterizing time variation natures based on wave propagation of phonon field 
and on motion of diffusion of phason, respectively according to mathematical physics 
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( ) / ( )
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w
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x x t t

u e

w e
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 (9) 

where   is a frequency and c  a speed of the wave, t  the time and 0t a special value of t , x  the 
distance, 0x  a special value of x , and w the kinetic coefficient of phason defined previously. 
Comparison results are shown in Fig.2 (a-c), in which the solid line represents the numerical 
solution of quasicrystals and the dotted line represents fundamental solution given by 
formulas (9). From Fig. 2(a) and (b) we can see that both displacement components of 
phonon field are in excellent agreement to the fundament solutions of mathematical physics. 
However, there are some differences because the phonon field is influenced by phason field 
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Fig. 2. (a) Displacement component of phonon field xu versus time 

 

 
Fig. 2. (b) Displacement component of phonon field yu versus time 
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Fig. 2. (c) Displacement component of phason field xw versus time 

and the phonon-phason coupling effect. From Fig. 2(c), in the phason field we find that the 
phason mode presents diffusive nature in the overall tendency, but because of influence of 
the phonon and phonon-phason coupling, it can also have some characters of fluctuation. So 
the model describes the dynamic behaviour of phonon field and phason field in deed. This 
also shows the mathematical modeling of the present work is valid. 

2.3 Testing the scheme and the computer program  
2.3.1 Stability of the scheme 
The stability of the scheme is the core problem of finite difference method which depends 
upon the choice of parameter 1 /c h  , which is the ratio between time step and space step 
substantively. The choice is related to the ratio 1 2/c c , i.e., the ratio between speeds of elastic 
longitudinal and transverse waves of the phonon field. To determine the upper bound for 
the ration to guarantee the stability, according to our computational practice and 
considering the experiences of computations for conventional materials, we choose 0.8 
in all cases and results are stable. 

2.3.2 Accuracy test 
The stability is only a necessary condition for successful computation. We must check the 
accuracy of the numerical solution. This can be realized through some comparison with 
some well-known classical solutions (analytic as well as numerical solutions) of 
conventional fracture mechanics. For this purpose the material constants in the computation 
are chosen as 1 27.34 mm/μs, 3.92 mm/μsc c   and 3 35 10 kg/m   , 0 1 MPap   which 
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are the same with those given in classical references for conventional fracture dynamics, 
discussed in Fan’s monograph [1] in detail. At first the comparison to the classical exact 
analytic solution is carried out, in this case we put 0x yw w   (i.e., 1 2 0K K R   ) for the 

numerical solution. The comparison has been done with the key physical quantity—
dynamic stress intensity factor, which is defined by 

 
0

0( ) lim ( ) ( ,0, )yy
x a

K t x a x t 



   (10) 

The normalized dynamic stress intensity factor can be denoted as ( ) / static
I IK t K , in which  static

IK  

is the corresponding static stress intensity factor, whose value here is taken as 0 0a p . For the 
dynamic initiation of crack growth in classical fracture dynamics there is the only exact analytic 
solution— the Maue’s solution (refer to Fan’s monograph [1]), but the configuration of whose 
specimen is quite different from that of our specimen. Maue studied a semi-infinite crack in an 
infinite body, and subjected to a Heaviside impact loading at the crack surface. While our 
specimen is a finite size rectangular plate with a central crack, and the applied stress is at the 
external boundary of the specimen. Generally the Maue’s model cannot describe the interaction 
between wave and external boundary. However, consider a very short time interval, i.e., during 
the period between the stress wave from the external boundary arriving at the crack tip (this time 
is denoted by 1t ) and before the reflecting by external boundary stress wave emanating from the 
crack tip in the finite size specimen (the time is marked as 2t ). During this special very short time 
interval our specimen can be seen as an “infinite specimen”. The comparison given by Fig. 3 
shows the numerical results are in excellent agreement with those of Maue’s solution within the 
short interval in which the solution is valid. 
Our solution corresponding to case of 0x yw w   is also compared with numerical 
solutions of conventional crystals, e.g. Murti’s solution and Chen’s solutions (refer to Fan [1] 
and Zhu and Fan [9] for the detail), which are also shown in Fig. 3, it is evident, our solution 
presents very high precise.  

2.3.3 Influence of mesh size (space step) 
The mesh size or the space step of the algorithm can influence the computational accuracy 
too. To check the accuracy of the algorithm we take different space steps shown in Table 1, 
which indicates if 0 /40h a the accuracy is good enough. The check is carried out through 
static solution, because the static crack problem in infinite body of decagonal quasicrystals 
has exact solution given in Chapter 8 of  monograph given by Fan [1], and the normalized 
static intensity factor is equal to unit. In the static case, there is no wave propagation effect, 

0 0/ 3, / 3L a H a   the effect of boundary to solution is very weak, and for our present 
specimen 0 0/ 4, / 8L a H a  , which may be seen as an infinite specimen, so the normalized 
static stress intensity factor is approximately but with highly precise equal to unit. The table 
shows that the algorithm is with a quite highly accuracy when 0 /40.h a   

2.4 Results of dynamic initiation of crack growth 
The dynamic crack problem presents two “phases” in the process: the dynamic initiation of 
crack growth and fast crack propagation. In the phase of dynamic initiation of crack growth, 
the length of the crack is constant, assuming 0( )a t a . The specimen with stationary crack 
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Fig. 3. Comparison of the present solution with analytic solution and other numerical 
solution for conventional structural materials given by other authors 

 
H a0/10 a0/15 a0/20 a0/30 a0/40 
K 0.9259 0.94829 0.9229 0.97723 0.99516 

Errors 7.410% 5.171% 3.771% 2.277% 0.484% 

Table 1. The normalized static S.I.F. of quasicrystals for different space steps 

that are subjected to a rapidly varying applied load 0( ) ( )p t p f t , where 0p  is a constant 
with stress dimension and ( )f t  is taken as the Heaviside function. It is well known the 
coupling effect between phonon and phason is very important, which reveals the distinctive 
physical properties including mechanical properties, and makes quasicrystals distinguish 
the periodic crystals. So studying the coupling effect is significant. 
The dynamic stress intensity factor ( )K t  for quasicrystals has the same definition given by 
equation (10), whose numerical results are plotted in Fig. 4, where the normalized dynamics 
stress intensity factor 0 0( )/K t a p is used. There are two curves in the Fig. 4, one 
represents quasicrystal, i.e., / 0.01R M  , the other describes periodic crystals 
corresponding to / 0R M  , the two curves of the Fig. 4 are apparently different, though 
they are similar to some extends. Because of the phonon-phason coupling effect, the 
mechanical properties of the quasicrystals are obviously different from the classical crystals. 
Thus, the coupling effect plays an important role. 
In Fig. 4, 0t represents the time that the wave from the external boundary propagates to the 
crack surface, in which 0 2.6735 μst  . So the velocity of the wave propagation is 

0 0/ 7.4807 km/sH t   , which is just equal to the longitudinal wave speed 
1 ( 2 )/c L M   . This indicates that for the complex system of wave propagation-motion 

of diffusion coupling, the phonon wave propagation presents dominating role. 
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Fig. 4. Normalized dynamics stress intensity factor (DSIF) versus time 

There are some oscillations of values of the stress intensity factor in the figure. These 
oscillations characterize the reflection and diffraction between waves coming from the crack 
surface and the specimen boundary surfaces. The oscillations are influenced by the material 
constants and specimen geometry including the shape and size very much. 

3. Elasto-/hydro-dynamics and applications to fracture dynamics of three-
dimensional icosahedral quasicrystals 
3.1 Basic equations, boundary and initial conditions  
There are over 50% icosahedral quasicrystals among observed the quasicrystals to date, this 
shows this kind of systems in the material presents the most importance. Within icosahedral 
quasicrystals, the icosahedral Al-Pd-Mn quasicrystals are concerned in particular by 
researchers, for which especially a rich set of experimental data for elastic constants 
accumulated so far, this is useful to the computational practice. So we focus on the elasto-
hydrodynamics of icosahedral Al-Pd-Mn quasicrystals here. From the previous section we 
have known there are lack of measured data for phason elastic constants, the computation 
has to take some data which are obtained by Monte Carlo simulation, this makes some 
undetermined factors for computational results for decagonal quasicrystals. This shows the 
discussion on icosahedral quasicrystals is more necessary, and the formalism and numerical 
results are presented in the following. 
If considering only the plane problem, especially for the crack problems, there are much of 
similarities with those discussed in the previous section. We present herein only the part 
that are different. 
For the plane problem, i.e.,  

 ( ) 0
z





 (11) 
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The linearized elasto-hydrodynamics of icosahedral quasicrystals have non-zero 
displacements ,z zu w  apart from , , ,x y x yu u w w , so in the strain tensors 

1 ( )
2

ji i
ij ij

j i j

uu w
w

x x x


 
  

  
 

it increases some non-zero components compared with those in two-dimensional 
quasicrystals. In connecting with this, in the stress tensors, the non-zero components 
increase too relatively to two-dimensional ones. With these reasons, the stress-strain 
relation presents different nature with that of decagonal quasicrystals though  the 
generalized Hooke’s law has the same form with that in one- and two-dimensional 
quasicrystals, i.e.,  

ij ijkl kl ijkl kl ij klij kl ijkl klC R w H R K w     
 

In particular the elastic constants are quite different from those discussed in the previous 
sections, in which the phonon elastic constants can be expressed such as   

 ( )ijkl ij kl ik jl il jkC           (12) 

and the phason elastic constant matrix [K] and phonon-phason coupling elastic one [R] are 
defined by the formulas of Fan’s monograph [1], which are not listed here again. 
Substituting these non-zero stress components into the equations of motion  
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 (13) 

and through the generalized Hooke’s law and strain-displacement relation we obtain the 
final dynamic equations as follows 
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in which  

 1 2
1 2 3 1 2 3

2 , , , ,  d ,R K K R
c c c d d

  
     


       (15) 

note that constants 1 2,c c and 3c have the meaning of elastic wave speeds, while 1 2,d d  and 
3d do not represent wave speed, but are diffusive coefficients and parameter   may be 

understood as a manmade damping coefficient as in the previous section.  
Consider an icosahedral quasicrystal specimen with a Griffith crack shown in Fig. 1, all 
parameters of geometry and loading are the same with those given in the previous, but in 
the boundary conditions there are some different points, which are given as below   

 

0, 0, 0, 0, 0, 0 on 0 for 0
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The initial conditions are 
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3.2 Some results 
We now concentrate on investigating the phonon and phason fields in the icosahedral Al-
Pd-Mn quasicrystal, in which we take 35.1 g/cm   and 74.2 GPa, 70.4 GPa   of the 
phonon elastic moduli, for phason ones 1 272 MPa, 37 MPaK K   and the  
constant relevant to diffusion coefficient of phason is 

19 3 10 31 / 4.8 10 m s/kg=4.8 10 cm μs/gw          . On the phonon-phason coupling 
constant, there is no measured result for icosahedral quasicrystals so far, we take 

/ 0.01R    for quasicrystals, and / 0R    for “decoupled quasicrystals” or crystals. 
The problem is solved by the finite difference method, the principle, scheme and algorithm are 
illustrated as those in the previous section, and shall not be repeated here. The testing for the 
physical model, scheme, algorithm and computer program are similar to those given in Section 2. 
The numerical results for dynamic initiation of crack growth problem, the phonon and 
phason displacements are shown in Fig. 5.  
The dynamic stress intensity factor ( )K t is defined by 

0
0( ) lim ( ) ( ,0, )yy

x a
K t x a x t 




 
 

and the normalized dynamics stress intensity factor (D.S.I.F.) 0 0( ) ( )/K t K t a p  is used, 
the results are illustrated in Fig. 6, in which the comparison with those of crystals are shown, 
one can see the effects of phason and phonon-phason coupling are evident very much.  
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Fig. 5. Displacement components of quasicrystals versus time.  
(a)displacement component xu ; (b)displacement component yu ;  
(c)displacement component xw ;(d)displacement component yw  

For the fast crack propagation problem the primary results are listed only the dynamic stress 
intensity factor versus time as below  
 

 
Fig. 6. Normalized dynamic stress intensity factor of central crack specimen under impact 
loading versus time 
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Fig. 7. Normalized stress intensity factor of propagating crack with constant crack speed 
versus time. 
Details of this work can be given by Fan and co-workers [1], [10]. 

4. Conclusion and discussion 
In Sections 1 through 3 a new model on dynamic response of quasicrystals based on 
argument of Lubensky et al is formulated. This model is regarded as an elasto-
hydrodynamics model for the material, or as a collaborating model of wave propagation 
and diffusion. This model is more complex than pure wave propagation model for 
conventional crystals, the analytic solution is very difficult to obtain, except  a few simple 
examples introduced in Fan’s monograph [1]. Numerical procedure based on finite 
difference algorithm is developed. Computed results confirm the validity of wave 
propagation behaviour of phonon field, and behaviour of diffusion of phason field. The 
interaction between phonons and phasons are also recorded. 
The finite difference formalism is applied to analyze dynamic initiation of crack growth and 
crack fast propagation for two-dimensional decagonal Al-Ni-Co and three-dimensional 
icosahedral Al-Pd-Mn quasicrystals, the displacement and stress fields around the tip of 
stationary and propagating cracks are revealed, the stress present singularity with order

1/2r , in which r denotes the distance measured from the crack tip. For the fast crack 
propagation, which is a nonlinear problem—moving boundary problem, one must provide 
additional condition for determining solution. For this purpose we give a criterion for 
checking crack propagation/crack arrest based on the critical stress criterion. Application of 
this additional condition for determining solution has helped us to achieve the numerical 
simulation of the moving boundary value problem and revealed crack length-time 
evolution. However, more important and difficult problems are left open for further study. 
Up to now the arguments on the physical meaning of phason variables based on 
hydrodynamics within different research groups have not been ended yet, see e.g. Coddens 
[11], which may be solved by further experimental and theoretical investigations. 
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